24 b b b in a p?

User Avatar

Wiki User

βˆ™ 2008-08-17 19:33:04

Best Answer

24 black birds baked in a pie. From the nursery rhyme Sing A Song Of Sixpence.

User Avatar

Wiki User

βˆ™ 2008-08-17 19:33:04
This answer is:
User Avatar
Study guides


20 cards

A polynomial of degree zero is a constant term

The grouping method of factoring can still be used when only some of the terms share a common factor A True B False

The sum or difference of p and q is the of the x-term in the trinomial

A number a power of a variable or a product of the two is a monomial while a polynomial is the of monomials

See all cards
1196 Reviews

Add your answer:

Earn +20 pts
Q: 24 b b b in a p?
Write your answer...
Still have questions?
magnify glass
Related questions

What is 24 b in a p?

there are 24 blackbirds in a pie!!!!!!!!

What does 24 b b in a p mean?

24 black birds in a pie

What does 24 BB in a P mean?

24 blackbirds baked in a pie? some times seen as 4 & 20 B B B in a pie.

What is 24 P of C in the H B?

Do you mean 23 P of C in the H B? 23 Pairs of chromosomes in the human body.

If A and B are independent events then are A and B' independent?

if P(A)>0 then P(B'|A)=1-P(B|A) so P(A intersect B')=P(A)P(B'|A)=P(A)[1-P(B|A)] =P(A)[1-P(B)] =P(A)P(B') the definition of independent events is if P(A intersect B')=P(A)P(B') that is the proof

What is the product rule and the sum rule of probability?

Sum Rule: P(A) = \sum_{B} P(A,B) Product Rule: P(A , B) = P(A) P(B|A) or P(A, B)=P(B) P(A|B) [P(A|B) means probability of A given that B has occurred] P(A, B) = P(A) P(B) , if A and B are independent events.

What does this ditloid mean 24 B B in a P?

Blackbirds Baked in a Pie. Should really be 4 and 20!

How do you find p(b) when p(a) is 23 p(ba) is 12 and p(a U b) is 45 and is a dependent event?

There are symbols missing from your question which I cam struggling to guess and re-insert. p(a) = 2/3 p(b ??? a) = 1/2 p(a ∪ b) = 4/5 p(b) = ? Why use the set notation of Union on the third given probability whereas the second probability has something missing but the "sets" are in the other order, and the order wouldn't matter in sets. There are two possibilities: 1) The second probability is: p(b ∩ a) = p(a ∩ b) = 1/2 → p(a) + p(b) = p(a ∪ b) + p(a ∩ b) → p(b) = p(a ∪ b) + p(a ∩ b) - p(a) = 4/5 + 1/2 - 2/3 = 24/30 + 15/30 - 20/30 = 19/30 2) The second and third probabilities are probabilities of "given that", ie: p(b|a) = 1/2 p(a|b) = 4/5 → Use Bayes theorem: p(b)p(a|b) = p(a)p(b|a) → p(b) = (p(a)p(b|a))/p(a|b) = (2/3 × 1/2) / (4/5) = 2/3 × 1/2 × 5/4 = 5/12

Addition rule for probability of events A and B?

If they're disjoint events: P(A and B) = P(A) + P(B) Generally: P(A and B) = P(A) + P(B) - P(A|B)

How do you find P A given B?

P(A|B)= P(A n B) / P(B) P(A n B) = probability of both A and B happening to check for independence you see if P(A|B) = P(B)

What is the formula for inclusive events?

P(a or b)= p(a)+p(b) - p(a and b)

Give the example of why probabilities of A given B and B given A are not same?

Let's try this example (best conceived of as a squared 2x2 table with sums to the side). The comma here is an AND logical operator. P(A, B) = 0.1 P(A, non-B) = 0.4 P(non-A, B) = 0.3 P(non-A, non-B) = 0.2 then P(A) and P(B) are obtained by summing on the different sides of the table: P(A) = P(A, B) + P(A, non-B) = 0.1 + 0.4 = 0.5 P(B) = P(A,B) + P(non-A, B) = 0.1 + 0.3 = 0.4 so P(A given B) = P (A, B) / P (B) = 0.1 / 0.4 = 0.25 also written P(A|B) P(B given A) = P (A,B) / P (A) = 0.1 / 0.5 = 0.2 The difference comes from the different negated events added to form the whole P(A) and P(B). If P(A, non-B) = P (B, non-A) then P(A) = P(B) and also P(A|B) = P(B|A).

People also asked