answersLogoWhite

0


Best Answer

Yes, it can both arithmetic and geometric.

The formula for an arithmetic sequence is: a(n)=a(1)+d(n-1)
The formula for a geometric sequence is: a(n)=a(1)*r^(n-1)

Now, when d is zero and r is one, a sequence is both geometric and arithmetic. This is because it becomes a(n)=a(1)1 =a(1). Note that a(n) is often written an
It can easily observed that this makes the sequence a constant.
Example:
a(1)=a(2)=(i) for i= 3,4,5...

if a(1)=3 then for a geometric sequence a(n)=3+0(n-1)=3,3,3,3,3,3,3
and the geometric sequence a(n)=3r0 =3 also so the sequence is 3,3,3,3...
In fact, we could do this for any constant sequence such as 1,1,1,1,1,1,1...or e,e,e,e,e,e,e,e...

In general, let k be a constant, the sequence an =a1 (r)1 (n-1)(0) with a1 =k
is the constant sequence k, k, k,... and is both geometric and arithmetic.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Can a sequence of numbers be both geometric and arithmetic?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

What are four numbers that make both an arithmetic and geometric series?

1,2,4, and 8.


How do you calculate the geometric mean?

The geometric mean, by definition, is the nth root of the product of the n units in a data set. For example, the geometric mean of 5, 7, 2, 1 is (5x7x2x1)1/4 = 2.893 Alternatively, if you log transform each of the individual units the geometric will be the exponential of the arithmetic mean of these log-transformed values. So, reusing the example above, exp[ ( ln(5)+ln(7)+ln(2)+ln(1) ) / 4 ] = 2.893 I agree with the above BUT... with two numbers, a geometric mean is the square root of the product (result of multiplication) of the two numbers while the arithmetic mean is half of the sum of the two numbers. For example, 2 and 8. The geometric mean is 2*8 = 16, sqrt(16) = 4. The arithmetic mean is (2+8)/2 = 5. Both give a number somewhere between those that contribute AND when the numbers are the same, both will agree. For 6 and 6, sqrt(36) = 6, 12/2 = 6. In other cases, they have different properties which make them advantageous in different places. BUT you should think of the two has having the same goal and being very similar in form (just turning addition to multiplication and multiplication to exponentiation). The earlier answer is better because it shows the generalization beyond two numbers (that is, when you have four numbers, you will multiply them all together and take the 4th root, rather than the square root), I added this to draw the similarity to a conventional mean and give an example that you could follow in your head. (Just wondering, why is it useful to show that for exponents multiplication becomes addition? -- I am not following the relevance to a geometric mean.)


What is the general rule for the arithmetic sequence 15 12 9 6?

There are two ways to say the general rule. They both mean exactlythe same thing, and they both generate the same sequence:1). Starting with 15, each new term is 3 less than the one before it.2). The nth term of the sequence is [ 18 - 3n ] or [ 3 times (6 - n) ].


What geometric shape has 11 sides?

A geometric shape that has 11 sides is called a "hendecagon" or "undecagon." Both terms are acceptable.


Will 0.54732814 produce a rational number when multiplied by 0.5?

The product of two rational numbers is a rational number. All decimal numbers that terminate or end with a repeating sequence of digits are rational numbers. As both 0.54732814 (as written) and 0.5 are terminating decimals, they are both rational numbers. As 0.54732814 is a rational number and 0.5 is a rational number, their product will also be a rational number.

Related questions

What is the sequence of numbers that are both geometric and arithmetic?

It is called arithmetico-geometric sequence. I have added a link with some nice information about them.


Is -4 -8 -16 -32 arithmetic geometric both or neither?

It is a geometric sequence.


What are four numbers that make both an arithmetic and geometric series?

1,2,4, and 8.


What is geometric and arithmetic?

They are both adjectives. The first relates to geometry and the second to arithmetic.


Properties and limitations of geometric mean?

In a given sequence, there are two possible means calculatable: Arithmetic Mean, and Geometric Mean. The arithmetic mean, as we all know, is calculated from the sum of all the numbers divided by how many numbers there are: Sumn/n. The Geometric sum is calculated by multiplying all the numbers within the sequence together and taking the nth root of this value: (Productn)(1/n).In a geometric series, N(i)= a(ri), the geometric mean is found to be a(rn-1), where n is the number of elements within the series. this decreases or increases exponentially depending on the r value. If r1, increasing.Limitation Of Geometric Mean are:-1) Geometric mean cannot be computed when there are both negative and positive values in a series or more observations are having zero value.2)Compared to Arithmetic Mean this average is more difficult to compute and interpret.-Iwin


How do you get the geometric mean of two numbers?

you add both of the two numbers together then divide the added number by the quantities of the items, in this case Two numbers and get the result. * * * * * The above is the arithmetic mean, which is quite different from the geometric mean. To get the geometric mean of n positive numbers, you multiply (not add) them together and take the nth root of the answer.


Is a geometric progression a quadratic sequence?

A geometric sequence is : a•r^n while a quadratic sequence is a• n^2 + b•n + c So the answer is no, unless we are talking about an infinite sequence of zeros which strictly speaking is both a geometric and a quadratic sequence.


How do you get the mean of the number?

you add both of the two numbers together then divide the added number by the quantities of the items, in this case Two numbers and get the result. * * * * * The above is the arithmetic mean, which is quite different from the geometric mean. To get the geometric mean of n positive numbers, you multiply (not add) them together and take the nth root of the answer.


What are two similarities between the base five arithmetic and clock five arithmetic?

base five and clock arithmetic both use whole numbers. and they both use place value to calculate.


Difference between AP series GPs reis?

AP - Arithmetic ProgressionGP - Geometric ProgressionAP:An AP series is an arithmetic progression, a sequence of numbers such that the difference between the consecutive terms is constant. For instance, the sequence 3, 5, 7, 9, 11, 13, … is an arithmetic progression with common difference 2. If the initial term of an arithmetic progression is and the common difference of successive members is d, then the nth term of the sequence is given by:and in generalA finite portion of an arithmetic progression is called a finite arithmetic progression and sometimes just called an arithmetic progression.The behavior of the arithmetic progression depends on the common difference d. If the common difference is:Positive, the members (terms) will grow towards positive infinity.Negative, the members (terms) will grow towards negative infinity.The sum of the members of a finite arithmetic progression is called an arithmetic series.Expressing the arithmetic series in two different ways:Adding both sides of the two equations, all terms involving d cancel:Dividing both sides by 2 produces a common form of the equation:An alternate form results from re-inserting the substitution: :In 499 AD Aryabhata, a prominent mathematician-astronomer from the classical age of Indian mathematics and Indian astronomy, gave this method in the Aryabhatiya (section 2.18) .[1]So, for example, the sum of the terms of the arithmetic progression given by an = 3 + (n-1)(5) up to the 50th term isGP:A GP is a geometric progression, with a constant ratio between successive terms. For example, the series is geometric, because each successive term can be obtained by multiplying the previous term by 1 / 2.Geometric series are one of the simplest examples of infinite series with finite sums, although not all of them have this property. Historically, geometric series played an important role in the early development of calculus, and they continue to be central in the study of convergence of series. Geometric series are used throughout mathematics, and they have important applications in physics, engineering, biology, economics, computer science, queuing theory, and finance.


If you roll 2 4 faced dice how many outcomes are there?

The question is underspecified since the answer depends on the numbers on the dice. If all the numbers on both the dice are the same, there is clearly only one outcome. If the dice have 4 different numbers, then there can be 16 different outcomes. If the numbers on each die are 1,2,3 and 4 (or any four numbers in arithmetic sequence) there will be 7 outcomes.


How do you calculate the geometric mean?

The geometric mean, by definition, is the nth root of the product of the n units in a data set. For example, the geometric mean of 5, 7, 2, 1 is (5x7x2x1)1/4 = 2.893 Alternatively, if you log transform each of the individual units the geometric will be the exponential of the arithmetic mean of these log-transformed values. So, reusing the example above, exp[ ( ln(5)+ln(7)+ln(2)+ln(1) ) / 4 ] = 2.893 I agree with the above BUT... with two numbers, a geometric mean is the square root of the product (result of multiplication) of the two numbers while the arithmetic mean is half of the sum of the two numbers. For example, 2 and 8. The geometric mean is 2*8 = 16, sqrt(16) = 4. The arithmetic mean is (2+8)/2 = 5. Both give a number somewhere between those that contribute AND when the numbers are the same, both will agree. For 6 and 6, sqrt(36) = 6, 12/2 = 6. In other cases, they have different properties which make them advantageous in different places. BUT you should think of the two has having the same goal and being very similar in form (just turning addition to multiplication and multiplication to exponentiation). The earlier answer is better because it shows the generalization beyond two numbers (that is, when you have four numbers, you will multiply them all together and take the 4th root, rather than the square root), I added this to draw the similarity to a conventional mean and give an example that you could follow in your head. (Just wondering, why is it useful to show that for exponents multiplication becomes addition? -- I am not following the relevance to a geometric mean.)