answersLogoWhite

0


Best Answer

it is conventional to define gravitational potential energy (GPE) of object A to be 0 when the object is free from the gravitational field of object B (i.e. at a infinite distance away)

As the objects get closer together, the GPE decreases, thus is less than 0. Therefore the GPE of any object normally has a negative value (however it all just depends on where you define to be the point at which the object has 0 GPE)

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Can the gravitational potential energy of an object ever have a negative value?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the gravitational potential at infinity?

With potential energy, what matters is the difference in potential energy, not the energy in absolute terms. To simplify calculations, the gravitational potential at infinity is arbitrarily set to zero. This gives objects that are nearer than infinity (to any object that attracts them gravitationally), a negative potential energy.With potential energy, what matters is the difference in potential energy, not the energy in absolute terms. To simplify calculations, the gravitational potential at infinity is arbitrarily set to zero. This gives objects that are nearer than infinity (to any object that attracts them gravitationally), a negative potential energy.With potential energy, what matters is the difference in potential energy, not the energy in absolute terms. To simplify calculations, the gravitational potential at infinity is arbitrarily set to zero. This gives objects that are nearer than infinity (to any object that attracts them gravitationally), a negative potential energy.With potential energy, what matters is the difference in potential energy, not the energy in absolute terms. To simplify calculations, the gravitational potential at infinity is arbitrarily set to zero. This gives objects that are nearer than infinity (to any object that attracts them gravitationally), a negative potential energy.


What is the law of gravitational potential energy?

Gravitational energy is the potential energy associated with gravitational force. If an object falls from one point to another point inside a gravitational field, the force of gravity will do positive work on the object, and the gravitational potential energy will decrease by the same amount.


What is the mathematical expression for gravitational potential energy?

Gravitational potential energy = (object's mass) x (acceleration of gravity) x (object's altitude)


What formula do you use to determine the Gravitational potential energy of an object?

Gravitational potential energy = (weight of the object) x (height) or Potential energy = (mass) x (acceleration of gravity) x (height)


What is gravitational potential energy related to?

The distance from the object providing a gravitational force.

Related questions

How does an object get gravitational potential energy?

An object gets gravitational potential energy by


Energy at a height is called what?

Energy related to the height of an object is gravitational potential energy.Energy related to the height of an object is gravitational potential energy.Energy related to the height of an object is gravitational potential energy.Energy related to the height of an object is gravitational potential energy.


Can the gravitational potential energy of an object be negative?

No. That would require a negative mass or a negative distance, neither of which is possible.


What does not have energy?

Any object that is at "level zero" has zero potential energy. In the case of gravitational potential energy, this level is sometimes defined to be ground level, sometimes (in Astronomy) at an infinite distance (in this case, any object that is closer than infinity has a negative potential energy).Any object that is at "level zero" has zero potential energy. In the case of gravitational potential energy, this level is sometimes defined to be ground level, sometimes (in Astronomy) at an infinite distance (in this case, any object that is closer than infinity has a negative potential energy).Any object that is at "level zero" has zero potential energy. In the case of gravitational potential energy, this level is sometimes defined to be ground level, sometimes (in Astronomy) at an infinite distance (in this case, any object that is closer than infinity has a negative potential energy).Any object that is at "level zero" has zero potential energy. In the case of gravitational potential energy, this level is sometimes defined to be ground level, sometimes (in Astronomy) at an infinite distance (in this case, any object that is closer than infinity has a negative potential energy).


What does not have potential energy?

Any object that is at "level zero" has zero potential energy. In the case of gravitational potential energy, this level is sometimes defined to be ground level, sometimes (in Astronomy) at an infinite distance (in this case, any object that is closer than infinity has a negative potential energy).Any object that is at "level zero" has zero potential energy. In the case of gravitational potential energy, this level is sometimes defined to be ground level, sometimes (in Astronomy) at an infinite distance (in this case, any object that is closer than infinity has a negative potential energy).Any object that is at "level zero" has zero potential energy. In the case of gravitational potential energy, this level is sometimes defined to be ground level, sometimes (in Astronomy) at an infinite distance (in this case, any object that is closer than infinity has a negative potential energy).Any object that is at "level zero" has zero potential energy. In the case of gravitational potential energy, this level is sometimes defined to be ground level, sometimes (in Astronomy) at an infinite distance (in this case, any object that is closer than infinity has a negative potential energy).


What is the gravitational potential at infinity?

With potential energy, what matters is the difference in potential energy, not the energy in absolute terms. To simplify calculations, the gravitational potential at infinity is arbitrarily set to zero. This gives objects that are nearer than infinity (to any object that attracts them gravitationally), a negative potential energy.With potential energy, what matters is the difference in potential energy, not the energy in absolute terms. To simplify calculations, the gravitational potential at infinity is arbitrarily set to zero. This gives objects that are nearer than infinity (to any object that attracts them gravitationally), a negative potential energy.With potential energy, what matters is the difference in potential energy, not the energy in absolute terms. To simplify calculations, the gravitational potential at infinity is arbitrarily set to zero. This gives objects that are nearer than infinity (to any object that attracts them gravitationally), a negative potential energy.With potential energy, what matters is the difference in potential energy, not the energy in absolute terms. To simplify calculations, the gravitational potential at infinity is arbitrarily set to zero. This gives objects that are nearer than infinity (to any object that attracts them gravitationally), a negative potential energy.


When you lift an object energy is transferred to an object which gives the object?

When you lift an object, the energy transferred to the object is called gravitational potential energy.


When does an object have gravitational potential energy?

Well gravitational potential energy is potential energy that depends on the height of an object so an object would have gravitational potential energy when ever it's of the ground or at a high height (it doesn't have to be very high) for example if you lift up a ball it has the potential to fall or if your climbing a mountain you have gravitational potential energy.


When you lift an object off the ground how are you changing its energy?

You are changing the object's gravitational potential energy. Gravitational potential energy is the energy due to position of the object above the Earth. This energy has the potential to be transformed into Kinetic Energy if the object falls.


Does speed affect gravitational potential energy of an object?

Does speed 'effect' the gravitational potential energy of an object? No, but gravitational potential energy can be converted into kinetic energy - so the gravitational potential energy can effect the speed. Ep = mgh Energy Potential = mass * 9.81 (gravity) * height Speed / Velocity is absent from that equation.


Is there more gravitational potential energy in heavier object or lighter object?

When they're both at the same height, the heavier object has more gravitational potential energy.


What is the law of gravitational potential energy?

Gravitational energy is the potential energy associated with gravitational force. If an object falls from one point to another point inside a gravitational field, the force of gravity will do positive work on the object, and the gravitational potential energy will decrease by the same amount.