Study guides

☆☆

Q: Describe a consistent independent system of linear equations?

Write your answer...

Submit

Related questions

The three types of linear equations are: Consistent Dependent, Consistent Independent, and Inconsistent.

A system of linear equations that has at least one solution is called consistent.

Two equations are independent when one is not a linear combination of the other.

It depends on the equations.

Independence:The equations of a linear system are independent if none of the equations can be derived algebraically from the others. When the equations are independent, each equation contains new information about the variables, and removing any of the equations increases the size of the solution set.Consistency:The equations of a linear system are consistent if they possess a common solution, and inconsistent otherwise. When the equations are inconsistent, it is possible to derive a contradiction from the equations, such as the statement that 0 = 1.Homogeneous:If the linear equations in a given system have a value of zero for all of their constant terms, the system is homogeneous.If one or more of the system's constant terms aren't zero, then the system is nonhomogeneous.

A system of equations may have any amount of solutions. If the equations are linear, the system will have either no solution, one solution, or an infinite number of solutions. If the equations are linear AND there are as many equations as variables, AND they are independent, the system will have exactly one solution.

Independence:The equations of a linear system are independentif none of the equations can be derived algebraically from the others. When the equations are independent, each equation contains new information about the variables, and removing any of the equations increases the size of the solution set.Consistency:The equations of a linear system are consistent if they possess a common solution, and inconsistent otherwise. When the equations are inconsistent, it is possible to derive a contradiction from the equations, such as the statement that 0 = 1.Homogeneous:If the linear equations in a given system have a value of zero for all of their constant terms, the system is homogeneous.If one or more of the system's constant terms aren't zero, then the system is nonhomogeneous.

An independent system of linear equations is a set of vectors in Rm, where any other vector in Rm can be written as a linear combination of all of the vectors in the set. The vector equation and the matrix equation can only have the trivial solution (x=0).

A system of linear equations is two or more simultaneous linear equations. In mathematics, a system of linear equations (or linear system) is a collection of linear equations involving the same set of variables.

All linear equations are functions but not all functions are linear equations.

A system of linear equations is consistent if there is only one solution for the system. Thus, if you see that the drawn lines intersect, you can say that the system is consistent, and the point of intersection is the only solution for the system. A system of linear equations is inconsistent if it does not have any solution. Thus, if you see that the drawn lines are parallel, you can say that the system is inconsistent, and there is not any solution for the system.

Linear equations or inequalities describe points x y that lie on a circle.

Equations are not linear when they are quadratic equations which are graphed in the form of a parabola

There is no quadratic equation that is 'linear'. There are linear equations and quadratic equations. Linear equations are equations in which the degree of the variable is 1, and quadratic equations are those equations in which the degree of the variable is 2.

The terms consistent and dependent are two ways to describe a system of linear equations. A system of linear equations is dependent if you can algebraically derive one of the equations from one or more of the other equations. A system of linear equations is consistent if they have a common solution.An example of a dependent system of linear equations:2x + 4y = 84x + 8y = 16Solve the first equation for x:x = 4 - 2yPlug that value of x into the second equation:16 - 8y + 8y = 16, which gives 16 = 16.No new information was gained from the second equation, because we already knew 16 = 16, so these two equations are dependent.An example of an inconsistent system of linear equations:Because consistency is boring.2x + 4y = 84x + 8y = 15Solve the first equation for x:x = 4 - 2yPlug that value of x into the second equation:16 - 8y + 8y = 15, which gives 16 = 15.This is a contradiction, because 16 doesn't equal 15. Therefore this system has no solution and is inconsistent.

They are not. A vertical line is not a function so all linear equations are not functions. And all functions are not linear equations.

Linear equations are a small minority of functions.

Most functions are not like linear equations.

The answer will depend on what kinds of equations: there are linear equations, polynomials of various orders, algebraic equations, trigonometric equations, exponential ones and logarithmic ones. There are single equations, systems of linear equations, systems of linear and non-linear equations. There are also differential equations which are classified by order and by degree. There are also partial differential equations.

Linear equations are always functions.

Linear equations are a tiny subset of functions. Linear equations are simple, continuous functions.

An independent system has one solution.

No, linear equations don't have x2. Equation with x and y are usually linear equations. Equations with either x2 or y2 (but never both) are usually quadratic equations.

there is no linear equations that has no solution every problem has a solution

A "system" of equations is a set or collection of equations that you deal with all together at once. Linear equations (ones that graph as straight lines) are simpler than non-linear equations, and the simplest linear system is one with two equations and two variables.