answersLogoWhite

0


Best Answer

Yes.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Does the area of a shape have to be called a square unit?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

Find square footage of odd shape?

The answer depends on the nature of the complex shape. Some complex shapes can be decomposed into smaller shapes whose areas can be determined using standard formulae. It is then simply a question of adding the parts together. For more complicated shapes, there are essentially two options: you can either use uniform laminae and mass or estimate the area using grids.Uniform Lamina: Copy the shape onto a sheet (lamina) of material with uniform density. Cut the shape out carefully and measure its mass (or weight). Do the same for a unit square of the lamina. Then, because the lamina is of uniform density, the ratio of the two areas is the same as the ratio of the two masses. That is: Area of Shape/Area of Unit Square = Mass of Shape/Mass of Unit Square. Rearranging, and noting that the area of the Unit Square is, by definition, = 1 sq unit Area of Shape = Mass of Shape/Mass of Unit Square.Grid Method: Copy the shape onto a grid, where each grid square has an area of G square units. Count the number of squares that are fully or mostly inside the shape. Call this number W (for whole). Count the number of squares that are approximately half inside the shape and call this number H (for half). Ignore any square that are less than half in the shape. Then a reasonable estimate of the area of the shape is G*[W + H/2] square units. There is some arbitrariness about "mostly inside"Â and "approximately half"Â but there is no way around that. You will get more accurate results with finer grids, but they will also require much more effort in terms of counting the grid squares.


How do you find the area of a mixed shape?

It depends partly on the nature of the mixed shape. Some complex shapes can be decomposed into smaller shapes whose areas can be determined using standard formulae. It is then simply a question of adding the parts together.For more complicated shapes, there are essentially two options: you can either use uniform laminae and mass or estimate the area using grids.Uniform Lamina: Copy the shape onto a sheet (lamina) of material with uniform density. Cut the shape out carefully and measure its mass (or weight). Do the same for a unit square of the lamina.Then, because the lamina is of uniform density, the ratio of the two areas is the same as the ratio of the two masses.That is: Area of Shape/Area of Unit Square = Mass of Shape/Mass of Unit Square =Rearranging, and noting that the area of the Unit Square is, by definition, = 1 sq unitArea of Shape = Mass of Shape/Mass of Unit Square.Grid Method: Copy the shape onto a grid, where each grid square has an area of G square units. Count the number of squares that are fully or mostly inside the shape. Call this number W (for whole). Count the number of squares that are approximately half inside the shape and call this number H (for half). Ignore any square that are less than half in the shape.Then a reasonable estimate of the area of the shape is G*[W + H/2] square units. There is some arbitrariness about “mostly inside” and “approximately half” but there is no way around that. You will get more accurate results with finer grids, but they will also require much more effort in terms of counting the grid squares.


How do you calculate the area of a complex shapes?

It depends partly on the nature of the complex shape. Some complex shapes can be decomposed into smaller shapes whose areas can be determined using standard formulae. It is the simply a question of adding the parts together.For more complicated shapes, there are essentially two options: you can either use uniform laminae and mass or estimate the area using grids.Uniform Lamina: Copy the shape onto a sheet (lamina) of material with uniform density. Cut the shape out carefully and measure its mass (or weight). Do the same for a unit square of the lamina.Then, because the lamina is of uniform density, the ratio of the two areas is the same as the ratio of the two masses.That is: Area of Shape/Area of Unit Square = Mass of Shape/Mass of Unit Square =Rearranging, and noting that the area of the Unit Square is, by definition, = 1 sq unitArea of Shape = Mass of Shape/Mass of Unit Square.Grid Method: Copy the shape onto a grid, where each grid square has an area of G square units. Count the number of squares that are fully or mostly inside the shape. Call this number W (for whole). Count the number of squares that are approximately half inside the shape and call this number H (for half). Ignore any square that are less than half in the shape.Then a reasonable estimate of the area of the shape is G*[W + H/2] square units. There is some arbitrariness about "mostly inside" and "approximately half" but there is no way around that. You will get more accurate results with finer grids, but they will also require much more effort in terms of counting the grid squares.


How could you estimate the area of a figure that is not a polygon?

The answer depends on the nature of the complex shape. Some complex shapes can be decomposed into smaller shapes whose areas can be determined using standard formulae. It is then simply a question of adding the parts together.For more complicated shapes, there are essentially two options: you can either use uniform laminae and mass or estimate the area using grids.Uniform Lamina: Copy the shape onto a sheet (lamina) of material with uniform density. Cut the shape out carefully and measure its mass (or weight). Do the same for a unit square of the lamina.Then, because the lamina is of uniform density, the ratio of the two areas is the same as the ratio of the two masses.That is: Area of Shape/Area of Unit Square = Mass of Shape/Mass of Unit Square =Rearranging, and noting that the area of the Unit Square is, by definition, = 1 sq unitArea of Shape = Mass of Shape/Mass of Unit Square.Grid Method: Copy the shape onto a grid, where each grid square has an area of G square units. Count the number of squares that are fully or mostly inside the shape. Call this number W (for whole). Count the number of squares that are approximately half inside the shape and call this number H (for half). Ignore any square that are less than half in the shape.Then a reasonable estimate of the area of the shape is G*[W + H/2] square units. There is some arbitrariness about "mostly inside" and "approximately half" but there is no way around that. You will get more accurate results with finer grids, but they will also require much more effort in terms of counting the grid squares.


What is the difference between a cubic unit and a square unit?

A cubic unit is a volume eg. m³ A square unit is an area eg. m²

Related questions

What is the perimeter of a square if the area is ten inches?

The area of any shape should be in SQUARE unit, and not only unit. So the question is wrong!


Is a square with a side length of 1 unit and is used to measure area is called?

A unit square.


How big is a 10 square acre block?

1). There is no such unit as a "square acre". The "acre" is a unit of area. It can have any shape. 2). A square with an area of 10 acres has a side with length 660 ft. (3 furlongs)


What is the SI base unit for area called?

There is no SI "base unit" for area. Originally there was a unit called an are which was equivalent to 100 square meters, but this has fallen out of favor. The hectare (100 are, or 10,000 square meters, or the area of a square 100 meters on a side) is also sometimes used, but it's not a base unit.Area is a derived quantity (from the unit for length), so the most appropriate SI unit for area is the square meter.


How do you square footage?

Square footage is a measure of area. There are formulae for some simple shapes but for more complicated shapes there are essentially two options: you can either use uniform laminae and mass or estimate the area using grids. Uniform Lamina: Copy the shape onto a sheet (lamina) of material with uniform density. Cut the shape out carefully and measure its mass (or weight). Do the same for a unit square of the lamina. Then, because the lamina is of uniform density, the ratio of the two areas is the same as the ratio of the two masses. That is: Area of Shape/Area of Unit Square = Mass of Shape/Mass of Unit Square. Rearranging, and noting that the area of the Unit Square is, by definition, = 1 sq unit Area of Shape = Mass of Shape/Mass of Unit Square. Grid Method: Copy the shape onto a grid, where each grid square has an area of G square units. Count the number of squares that are fully or mostly inside the shape. Call this number W (for whole). Count the number of squares that are approximately half inside the shape and call this number H (for half). Ignore any square that are less than half in the shape. Then a reasonable estimate of the area of the shape is G*[W + H/2] square units. There is some arbitrariness about “mostly inside†and “approximately half†but there is no way around that. You will get more accurate results with finer grids, but they will also require much more effort in terms of counting the grid squares.


How do you measure the square footage of a decagon?

It depends first of all on whether or not the decagon is regular. If it is not regular, there are two main options: one is to divide it into sections for which there are simple formulae, and sum the results. The alternative is to copy the shape onto a lamina of uniform mass, measure the mass (or weight) of the shape and of a square of unit size and use the ratio of the masses to estimate the area of the shape. Area of shape = (Mass of copied shape/Mass of unit square)*Area of unit square The last term has value 1, but is included so that the equation is balanced in its dimensions. If the shape is regular, then it depends on what information is given.


Calculate 16x32x6.50 in square feet?

Square feet are a measurement unit for area. It is not clear what shape the three numbers in the question refer to.


How do you find the area of a irregular quadrilateral without breaking it apart?

I do not believe that it can be done. You can get an estimate using either of the following methods:Uniform Lamina: Copy the shape onto a sheet (lamina) of material with uniform density. Cut the shape out carefully and measure its mass (or weight). Do the same for a unit square of the lamina. Then, because the lamina is of uniform density, the ratio of the two areas is the same as the ratio of the two masses. That is: Area of Shape/Area of Unit Square = Mass of Shape/Mass of Unit Square. Rearranging, and noting that the area of the Unit Square is, by definition, = 1 sq unit Area of Shape = Mass of Shape/Mass of Unit Square. Grid Method: Copy the shape onto a grid, where each grid square has an area of G square units. Count the number of squares that are fully or mostly inside the shape. Call this number W (for whole). Count the number of squares that are approximately half inside the shape and call this number H (for half). Ignore any square that are less than half in the shape. Then a reasonable estimate of the area of the shape is G*[W + H/2] square units. There is some arbitrariness about “mostly inside†and “approximately half†but there is no way around that. You will get more accurate results with finer grids, but they will also require much more effort in terms of counting the grid squares.


What units are areas of spheres measured in?

Any [unit of length]2 is a unit of area. Some popular ones are -- square inch -- square foot -- square yard -- square centimeter -- square meter -- hectare -- acre -- section. The shape of the area doesn't matter. It doesn't even have to be flat.


What is square inches is a unit of this?

A square inch is a unit of area.


How can we measure the area of an irregular shape - jaytee 5 a?

The answer depends on the nature of the complex shape. Some complex shapes can be decomposed into smaller shapes whose areas can be determined using standard formulae. It is then simply a question of adding the parts together. For more complicated shapes, there are essentially two options: you can either use uniform laminae and mass or estimate the area using grids. Uniform Lamina: Copy the shape onto a sheet (lamina) of material with uniform density. Cut the shape out carefully and measure its mass (or weight). Do the same for a unit square of the lamina. Then, because the lamina is of uniform density, the ratio of the two areas is the same as the ratio of the two masses. That is: Area of Shape/Area of Unit Square = Mass of Shape/Mass of Unit Square. Rearranging, and noting that the area of the Unit Square is, by definition, = 1 sq unit Area of Shape = Mass of Shape/Mass of Unit Square. Grid Method: Copy the shape onto a grid, where each grid square has an area of G square units. Count the number of squares that are fully or mostly inside the shape. Call this number W (for whole). Count the number of squares that are approximately half inside the shape and call this number H (for half). Ignore any square that are less than half in the shape. Then a reasonable estimate of the area of the shape is G*[W + H/2] square units. There is some arbitrariness about “mostly inside” and “approximately half” but there is no way around that. You will get more accurate results with finer grids, but they will also require much more effort in terms of counting the grid squares.


What would 94 inches be in square meters?

An inch is a unit of length, a square meter is a unit of area. You can't convert that.An inch is a unit of length, a square meter is a unit of area. You can't convert that.An inch is a unit of length, a square meter is a unit of area. You can't convert that.An inch is a unit of length, a square meter is a unit of area. You can't convert that.