1.start
2.a=0,b=1,c and counter
3.display a
4.display b
5.c=a+b
6.display c
7.a=b
8.b=c
9.check whether number is less than the last number you have
if yes than go to step 5
if no stop it
wefwfe
Here is a good answer for recursion Fibonacci series. #include <stdio.h> #include <conio.h> long Fibonacci(long n); int main() { long r, n,i; printf("Enter the value of n: "); scanf("%ld",&n); for(i=0;i<=n;i++) { printf(" Fibonacci(%ld)= %ld\n", i,Fibonacci(i)); } getch(); return 0; } long Fibonacci(long n) { if(n==0 n==1) return n; else { return (Fibonacci(n-1)+Fibonacci(n-2)); } } for n=5; Output: Fibonacci(0)=0 Fibonacci(1)=1 Fibonacci(2)=1 Fibonacci(3)=2 Fibonacci(4)=3 Fibonacci(5)=5
#include<stdio.h> void printFibonacci(int); int main(){ int k,n; long int i=0,j=1,f; printf("Enter the range of the Fibonacci series: "); scanf("%d",&n); printf("Fibonacci Series: "); printf("%d %d ",0,1); printFibonacci(n); return 0; } void printFibonacci(int n){ static long int first=0,second=1,sum; if(n>0){ sum = first + second; first = second; second = sum; printf("%ld ",sum); printFibonacci(n-1); } }
jgfujtf
#include #include void main(void) { int i,j,k,n; clrscr(); i=0; j=1; printf("%d %d ",i,j); for(n=0;n<=5;n++) { k=i+j; i=j; j=k; printf("%d ",k); } getch(); }
20 is not a term in the Fibonacci series.
Exactly what do you mean by 'C program in Java'
An algorithm is a series of steps leading to a result. A flowchart can be a graphical representation of the algorithm.
Fibonacci!
As you expand the Fibonacci series, each new value in proportion to the previous approaches the Golden Ratio.
132134...
Series
It is 354224848179261915075.
The Fibonacci series.
A Fibonacci number series is like the example below, 1,1,2,3,5,8,13,21,34,55,89,144,233,377,610...... and so on in general Fibonacci numbers are just the previous two numbers added together starting with 1 and 0 then goes on forever.
The sum of the previous two numbers in the series.
wefwfe