answersLogoWhite

0


Best Answer

yes form cayleys theorem . every group is isomorphic to groups of permutation and finite groups are not an exception.

User Avatar

Wiki User

11y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Every finite group is isomorphic to a permutation group?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

How to determine number of isomorphic group of order 121?

Since 121 is the square of a prime, there are only two distinct isomorphic groups.


How do you prove Cayley's theorem which states that every group is isomorphic to a permutation group?

Cayley's theorem:Let (G,$) be a group. For each g Є G, let Jg be a permutation of G such thatJg(x) = g$xJ, then, is a function from g to Jg, J: g --> Jg and is an isomorphism from (G,$) onto a permutation group on G.Proof:We already know, from another established theorem that I'm not going to prove here, that an element invertible for an associative composition is cancellable for that composition, therefore Jg is a permutation of G. Given another permutation, Jh = Jg, then h = h$x = Jh(x) = Jg(x) = g$x = g, meaning J is injective. Now for the fun part!For every x Є G, a composition of two permutations is as follows:(Jg ○ Jh)(x) = Jg(Jh(x)) = Jg(h$x) = g$(h$x) = (g$h)$x = Jg$h(x)Therefore Jg ○ Jh = Jg$h(x) for all g, h Є GThat means that the set Ђ = {Jg: g Є G} is a stable subset of the permutation subset of G, written as ЖG, and J is an isomorphism from G onto Ђ. Consequently, Ђ is a group and therefore is a permutation group on G.Q.E.D.


Give an example of a permutation and combination?

If there is a group of 3 coloured balls, then any groups of 2 balls selected from it will be considered as a combination, whereas the different arrangements of every combination will be considered as a permutation


G is finite group if and only if the number of it is subgroups is finite?

False. G may be a finite group without sub-groups.


What is the permutation group for 123?

{123, 132, 213, 231, 312, 321}

Related questions

What are permutation groups?

A permutation group is a group of permutations, or bijections (one-to-one, onto functions) between a finite set and itself.


What is Cayley's Theorem?

Cayley's Theorem states that every group G is isomorphic to a subgroup of the symmetric group on G.


What is finite and infinite cyclic group?

Normally, a cyclic group is defined as a set of numbers generated by repeated use of an operator on a single element which is called the generator and is denoted by g.If the operation is multiplicative then the elements are g0, g1, g2, ...Such a group may be finite or infinite. If for some integer k, gk = g0 then the cyclic group is finite, of order k. If there is no such k, then it is infinite - and is isomorphic to Z(integers) with the operation being addition.


How to determine number of isomorphic group of order 121?

Since 121 is the square of a prime, there are only two distinct isomorphic groups.


How do you prove Cayley's theorem which states that every group is isomorphic to a permutation group?

Cayley's theorem:Let (G,$) be a group. For each g Є G, let Jg be a permutation of G such thatJg(x) = g$xJ, then, is a function from g to Jg, J: g --> Jg and is an isomorphism from (G,$) onto a permutation group on G.Proof:We already know, from another established theorem that I'm not going to prove here, that an element invertible for an associative composition is cancellable for that composition, therefore Jg is a permutation of G. Given another permutation, Jh = Jg, then h = h$x = Jh(x) = Jg(x) = g$x = g, meaning J is injective. Now for the fun part!For every x Є G, a composition of two permutations is as follows:(Jg ○ Jh)(x) = Jg(Jh(x)) = Jg(h$x) = g$(h$x) = (g$h)$x = Jg$h(x)Therefore Jg ○ Jh = Jg$h(x) for all g, h Є GThat means that the set Ђ = {Jg: g Є G} is a stable subset of the permutation subset of G, written as ЖG, and J is an isomorphism from G onto Ђ. Consequently, Ђ is a group and therefore is a permutation group on G.Q.E.D.


Give an example of a permutation and combination?

If there is a group of 3 coloured balls, then any groups of 2 balls selected from it will be considered as a combination, whereas the different arrangements of every combination will be considered as a permutation


Let Sn be the group of permutations on n symbols Then 1. S4 has no subgroup isomorphic to S3 2. S4 has only one subgroup isomorphic to S3 3. S4 has exactly 3 distinct subgroups isomorphic to S3?

It has 4 subgroups isomorphic to S3. If you hold each of the 4 elements fixed and permute the remaining three, you get each of the 4 subgroups isomorphic to S3.


What is the difference between permutation and combinations?

A permutation is an arrangement of objects in some specific order. Permutations are regarded as ordered elements. A selection in which order is not important is called a combination. Combinations are regarded as sets. For example, if there is a group of 3 different colored balls, then any group of 2 balls selected from it will be considered as a combination, whereas the different arrangements of every combination will be considered as a permutation.


How do you determine number of isomorphic groups of order 10?

There are two: the cyclic group (C10) and the dihedral group (D10).


Is every finite abelian group is cyclic?

No, for instance the Klein group is finite and abelian but not cyclic. Even more groups can be found having this chariacteristic for instance Z9 x Z9 is abelian but not cyclic


G is finite group if and only if the number of it is subgroups is finite?

False. G may be a finite group without sub-groups.


What is the permutation group for 123?

{123, 132, 213, 231, 312, 321}