Study guides

Q: What is the probability of getting exactly three heads when you flip a coin four times?

Write your answer...

Submit

Related questions

33%

The opposite of getting at most two heads is getting three heads. The probability of getting three heads is (1/2)^2, which is 1/8. The probability of getting at most two heads is then 1 - 1/8 which is 7/8.

3 out of 8

Since a coin has two sides and it was tossed 5 times, there are 32 possible combinations of results. The probability of getting heads three times in 5 tries is 10/32. This is 5/16.

There is a 1/8 chance to land three heads.

It is 0.1042

Three in eight are the odds of getting exactly two heads in three coin flips. There are eight ways the three flips can end up, and you can get two heads and a tail, a head and a tail and a head, or a tail and two heads to get exactly two heads.

Each toss has a 1/2 probability of getting heads. Each toss is an independent event. So three heads in a row (heads AND heads AND heads) would have a probability of:1/2 * 1/2 * 1/2 = (1/2)^3 = 1/(2^3) = 1/8 = 12.5%

2 out of 3 i think

0.53 = 0.125.

the probability of getting heads-heads-heads if you toss a coin three times is 1 out of 9.

It is 1/8 = 0.125

If you mean 'at least' 2 heads, the probability is 50%. If you mean exactly 2, the probability is 3/8, or 37.5%. There are 3 independent coin tosses, each of which is equally likely to come up heads or tails. That's a total of 2 * 2 * 2 or 8 possible outcomes (HHH, HHT, HTH, etc.). Of these, 4 include 2 or 3 heads, which is half of 8. Only 3 include exactly 2 heads, so the probability of that is 3/8.

For 3 coin flips: 87% chance of getting heads at least once 25% chance of getting heads twice 13% chance of getting heads all three times

It is (1/2)3 = 1/8 or 0.125

The sample space is 23 or 8; which can be listed out as: HHH, HHT, HTH, HTT, THH, THT, TTH, TTT. There are 2 of the 8 that have exactly 2 heads; so the probability of exactly two coins landing on heads is 2/8 or 1/4.

It is 93/256 = 0.363 approx.

7/8

We can simplify the question by putting it this way: what is the probability that exactly one out of two coin flips is a head? Our options are HH, HT, TH, TT. Two of these four have exactly one head. So 2/4=.5 is the answer.

The probability of obtaining exactly two heads in three flips of a coin is 0.5x0.5x0.5 (for the probabilities) x3 (for the number of ways it could happen). This is 0.375. However, we are told that at least one is a head, so the probability that we got 3 tails was impossible. This probability is 0.53 or 0.125. To deduct this we need to divide the probability we have by 1-0.125 0.375/(1-0.125) = approximately 0.4286

The probability to get heads once is 1/2 as the coin is fair The probability to get heads twice is 1/2x1/2 The probability to get heads three times is 1/2x1/2x1/2 The probability to get tails once is 1/2 The probability to get tails 5 times is (1/2)5 So the probability to get 3 heads when the coin is tossed 8 times is (1/2)3(1/2)5=(1/2)8 = 1/256 If you read carefully you'll understand that 3 heads and 5 tails has the same probability than any other outcome = 1/256 As the coin is fair, each side has the same probability to appear So the probability to get 3 heads and 5 tails is the same as getting for instance 8 heads or 8 tails or 1 tails and 7 heads, and so on

The answer depends on how many times the coin is tossed. The probability is zero if the coin is tossed only once! Making some assumptions and rewording your question as "If I toss a fair coin twice, what is the probability it comes up heads both times" then the probability of it being heads on any given toss is 0.5, and the probability of it being heads on both tosses is 0.5 x 0.5 = 0.25. If you toss it three times and want to know what the probability of it being heads exactly twice is, then the calculation is more complicated, but it comes out to 0.375.

25:75

The probability of throwing exactly 2 heads in three flips of a coin is 3 in 8, or 0.375. There are 8 outcomes of flipping a coin 3 times, HHH, HHT, HTH, HTT, THH, THT, TTH, and TTT. Of those outcomes, 3 contain two heads, so the answer is 3 in 8.

The probability of getting all heads if you flip a coin three times is: P(HHH) = 1/2 ∙ 1/2 ∙ 1/2 = 1/8. The probability of getting all tails if you flip a coin three times is: P(TTT) = 1/2 ∙ 1/2 ∙ 1/2 = 1/8. The probability of getting all heads or all tails if you flip a coin three times is: P(HHH or TTT) = P(HHH) + P(TTT) = 2/8 = 1/4.