Best Answer

Using Pythagoras' theorem it is 21.932 feet in length rounded to 3 dp

Q: How long is a string reaching from the top of a 20-ft pole to a point 9 ft from the base of the pole?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

Using Pythagoras' theorem it is sq rt of 218 which is about 14.765 ft rounded to 3 decimal places

A pentagon for a base, five triangles reaching up to a point on top.

1) Cut a strip of paper or a piece of non-stretchy string.2) Wrap it snugly around the base of your finger.3) Mark the point on it where it completes the circle.4) Measure the length of the string or paper5) Find out your ring size on our conversion chart

Using Pythagoras' theorem it is 6 times the sq rt of 5 which is about 13.416 feet to 3 decimal places

No. Only hits, walks, and times hit-by-pitch improve a hitter's OBP.

Related questions

Using Pythagoras' theorem it is sq rt of 218 which is about 14.765 ft rounded to 3 decimal places

The area is 120ft2

Yes! Four at the base, and four edges reaching to the point, or apex.

A pentagon for a base, five triangles reaching up to a point on top.

String

In the sport of baseball, you can increase your On Base Percentage by safely reaching base more than you currently do. This can be by base hits, walks, reaching on errors or fielder's choice.

the double bass has 4 strings G string D string A string and E string.

sq root ( 144 + 36 ) = 13.416 feet (approx)

1) Cut a strip of paper or a piece of non-stretchy string.2) Wrap it snugly around the base of your finger.3) Mark the point on it where it completes the circle.4) Measure the length of the string or paper5) Find out your ring size on our conversion chart

This is named the "first" string and has the note G. On a four-string base in "standard" tuning, the notes of the open strings from thickest to thinnest are E, A, D, G.

Number, string, binary string.

The following code will convert any number in any base to any other base, from binary to hexadecimal, and everything inbetween. #include<iostream> #include<string> #include<sstream> typedef unsigned long long ull; typedef unsigned long ul; const std::string symbols="0123456789abcdef"; std::string inputvalue(ul base) { using namespace std; string value; while(1) { cout<<"Enter a positive value : "; string s; getline(cin,s); if(s.size()) { for(string::iterator i=s.begin();i!=s.end();++i) if(*i>='A' && *i<='Z') *i+=32; string actual = symbols.substr(0,base); if(s.find_first_not_of(actual)!=string::npos) { cout<<"The value you entered is invalid for the base.\n" <<"Please enter another value.\n"<<endl; continue; } value=s; break; } } return(value); } ul inputbase(std::string prompt) { using namespace std; ul result=0, min=2, max=16; while(1) { cout<<prompt.c_str()<<" ["<<min<<".."<<max<<"] : "; string s; getline(cin,s); if(s.size()) result=stoul(s,0,10); if(result<min result>max) cout<<"The base must be in the range " <<min<<".."<<max<<"\n" <<"Please enter another base.\n"<<endl; else break; } return(result); } ull base2dec(std::string value,ul base) { ull col=1, num=0; for(std::string::reverse_iterator i=value.rbegin(); i!=value.rend(); ++i) { num+=symbols.find(*i,0)*col; col*=base; } return(num); } std::string dec2base(ull dec,ul base) { using namespace std; int len=1; ull tmp=dec; while(tmp/=base) ++len; string value("0",len); while(dec) { value[--len]=symbols[dec%base]; dec/=base; } return(value); } int main() { using namespace std; ul base=inputbase("Enter the base of the value"); string value=inputvalue(base); ul newbase=inputbase("Enter the base to convert to"); value=dec2base(base2dec(value,base),newbase); cout<<"New value:\t"<<value.c_str()<<endl; return(0); }