answersLogoWhite

0


Best Answer

You cannot since the graph shows displacement in the radial direction against time. Information on transverse displacement, and therefore transverse velocity, is not shown.

For example, there is no difference in the graph of you're staying still and that of your running around in a circle whose centre is the origin of the graph. In both cases, your displacement from the origin does not change and so the graph is a horizontal line. In the first case the velocity is 0 and in the second it is a constantly changing vector.

All that you can find is the component of the velocity in the radial direction and this is the slope of the graph at the point in question.

User Avatar

Wiki User

10y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

10y ago
You cannot since the graph shows displacement in the radial direction against time. Information on transverse displacement, and therefore transverse velocity, is not shown.
For example, there is no difference in the graph of you're staying still and that of your running around in a circle whose centre is the origin of the graph. In both cases, your displacement from the origin does not change and so the graph is a horizontal line. In the first case the velocity is 0 and in the second it is a constantly changing vector.

All that you can find is the component of the velocity in the radial direction and this is the slope of the graph at the point in question.

You cannot since the graph shows displacement in the radial direction against time. Information on transverse displacement, and therefore transverse velocity, is not shown.
For example, there is no difference in the graph of you're staying still and that of your running around in a circle whose centre is the origin of the graph. In both cases, your displacement from the origin does not change and so the graph is a horizontal line. In the first case the velocity is 0 and in the second it is a constantly changing vector.

All that you can find is the component of the velocity in the radial direction and this is the slope of the graph at the point in question.

You cannot since the graph shows displacement in the radial direction against time. Information on transverse displacement, and therefore transverse velocity, is not shown.
For example, there is no difference in the graph of you're staying still and that of your running around in a circle whose centre is the origin of the graph. In both cases, your displacement from the origin does not change and so the graph is a horizontal line. In the first case the velocity is 0 and in the second it is a constantly changing vector.

All that you can find is the component of the velocity in the radial direction and this is the slope of the graph at the point in question.

You cannot since the graph shows displacement in the radial direction against time. Information on transverse displacement, and therefore transverse velocity, is not shown.
For example, there is no difference in the graph of you're staying still and that of your running around in a circle whose centre is the origin of the graph. In both cases, your displacement from the origin does not change and so the graph is a horizontal line. In the first case the velocity is 0 and in the second it is a constantly changing vector.

All that you can find is the component of the velocity in the radial direction and this is the slope of the graph at the point in question.
This answer is:
User Avatar

User Avatar

Wiki User

11y ago

You can find the displacement of an object given a velocity-time graph, not an acceleration-time graph. The area under the shaded regions between the line and the time-axis represent the displacement during the stated time interval.

Refer to the related link for an illustration.

This answer is:
User Avatar

User Avatar

Wiki User

10y ago

how to calculate displacement on a velocity time graph

This answer is:
User Avatar

User Avatar

Wiki User

12y ago

Hey there

in order to calculate distance time graph you must make sure that you find the area underneath the graph. This will be its distance

This answer is:
User Avatar

User Avatar

Wiki User

13y ago

find the tangential slope at the time intervals and you will get velocity.. then just plot it on the graph

This answer is:
User Avatar

User Avatar

Wiki User

12y ago

It is the gradient of the line. To work this out, divide vertical distance by horizontal.

This answer is:
User Avatar

User Avatar

Wiki User

11y ago

Divide vertical distance by horizontal

This answer is:
User Avatar

User Avatar

Wiki User

11y ago

Displacement is the area under the graph.

This answer is:
User Avatar

User Avatar

Wiki User

11y ago

You die.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How to calculate distance from a velocity time graph?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

Calculate distance from a velocity time graph?

The area between the graph and the x-axis is the distance moved. If the velocity is constant the v vs t graph is a straight horizontal line. The shape of the area under the graph is a rectangle. For constant velocity, distance = V * time. Time is the x-axis and velocity is the y-axis. If the object is accelerating, the velocity is increasing at a constant rate. The graph is a line whose slope equals the acceleration. The shape of the graph is a triangle. The area under the graph is ½ * base * height. The base is time, and the height is the velocity. If the initial velocity is 0, the average velocity is final velocity ÷ 2. Distance = average velocity * time. Distance = (final velocity ÷ 2) * time, time is on the x-axis, and velocity is on the y-axis. (final velocity ÷ 2) * time = ½ time * final velocity ...½ base * height = ½ time * final velocity Area under graph = distance moved Most velocity graphs are horizontal lines or sloping lines.


How is the velocity-time graph related to the distance traveled?

The product of velocity and time yields distance travelled if the velocity is constant for the time in question. If velocity is not constant, one must first calculate the average velocity over a given time period before multiplying it by the time involved.


How do you develop the general velocity equation from a Velocity vs Time graph?

Derivitives of a velocity : time graph are acceleration and distance travelled. Acceleration = velocity change / time ( slope of the graph ) a = (v - u) / t Distance travelled = average velocity between two time values * time (area under the graph) s = ((v - u) / 2) * t


How do you go from a position graph to a velocity graph?

you can't....it's merely impossible! Assuming it is a graph of velocity vs time, it's not impossible, it's simple. Average velocity is total distance divided by total time. The total time is the difference between finish and start times, and the distance is the area under the graph between the graph and the time axis.


Can a position time graph be created from a velocity time graph?

Distance travelled from a velocity / time graph can be calculated from area under graph, say area under (v/t) graph from 0 - 1 seconds = distance travelled after 1 second, then do 0 - 2 seconds, 0 - 3 etc for set of data for distance / time graph

Related questions

Calculate distance from a velocity time graph?

The area between the graph and the x-axis is the distance moved. If the velocity is constant the v vs t graph is a straight horizontal line. The shape of the area under the graph is a rectangle. For constant velocity, distance = V * time. Time is the x-axis and velocity is the y-axis. If the object is accelerating, the velocity is increasing at a constant rate. The graph is a line whose slope equals the acceleration. The shape of the graph is a triangle. The area under the graph is ½ * base * height. The base is time, and the height is the velocity. If the initial velocity is 0, the average velocity is final velocity ÷ 2. Distance = average velocity * time. Distance = (final velocity ÷ 2) * time, time is on the x-axis, and velocity is on the y-axis. (final velocity ÷ 2) * time = ½ time * final velocity ...½ base * height = ½ time * final velocity Area under graph = distance moved Most velocity graphs are horizontal lines or sloping lines.


What does a zero velocity graph look like?

In a velocity-time graph it will be the time axis (where velocity = 0). On a distance-time graph it will be a line parallel to the time axis: distance = some constant (which may be 0).


How is the velocity-time graph related to the distance traveled?

The product of velocity and time yields distance travelled if the velocity is constant for the time in question. If velocity is not constant, one must first calculate the average velocity over a given time period before multiplying it by the time involved.


What can you calculate from velocity time graph?

accrleration


How do you calculate deceleration on a velocity time graph?

It is the downward gradient of the graph.


How do you calculate velocity from an x-t graph?

If an x-t graph is a position-time graph, velocity is the slope of the line on the graph.


In what kind of graph can you identify velocity?

A graph of distance against time.


What is the difference between a velocity time graph and a position time graph?

Simply put, a velocity time graph is velocity (m/s) in the Y coordinate and time (s) in the X and a position time graph is distance (m) in the Y coordinate and time (s) in the X if you where to find the slope of a tangent on a distance time graph, it would give you the velocity whereas the slope on a velocity time graph would give you the acceleration.


How do you know there is no motion on a distance time-graph?

distance = velocity x time so on the graph velocity is slope. If slope is zero (horizontal line) there is no motion


Why is the distance time graph a straight line for?

A straight line on a distance - time graph represents a "constant velocity".


What is the quantity which is measured by the area occupied below the velocity - time graph?

Distance travelled (displacement). Distance = velocity/time, so velocity * time = distance. Likewise, x = dv/dt so the integral of velocity with respect to time (area under the graph) is x, the distance travelled.


How do you develop the general velocity equation from a Velocity vs Time graph?

Derivitives of a velocity : time graph are acceleration and distance travelled. Acceleration = velocity change / time ( slope of the graph ) a = (v - u) / t Distance travelled = average velocity between two time values * time (area under the graph) s = ((v - u) / 2) * t