Speed = (wavelength) x (frequency) = (480 Hz) x (3.1 m) = 1,488 meters/sec.
(About 4.3 times the speed of sound in air !)
That would also depend on the speed. Note that sound can go at quite different speeds, depending on the medium and the temperature. Use the formula speed (of sound) = frequency x wavelength. Solving for wavelength: wavelength = speed / frequency. If the speed is in meters / second, and the frequency in Hertz, then the wavelength will be in meters.
The frequency of a sound source is directly related to the wavelength and the speed of sound in air through the equation: speed of sound = frequency x wavelength. As the frequency of the sound increases, the wavelength decreases, and vice versa, provided the speed of sound remains constant in the medium.
The wavelength of sound can be calculated using the formula: wavelength = speed of sound / frequency. Assuming the speed of sound is around 343 m/s, we can calculate the wavelength of sound with a frequency of 539.8 Hz to be approximately 0.636 meters.
The wavelength of a sound wave can be calculated using the formula: wavelength = speed of sound / frequency. Assuming the speed of sound in air is around 343 m/s, the wavelength of a sound wave with a frequency of 42 Hz would be approximately 8.17 meters.
The wavelength of a sound wave at 16 kHz is approximately 2.15 cm. This can be calculated using the formula: wavelength = speed of sound / frequency. In this case, with the speed of sound in air at around 343 m/s.
The speed of sound in fresh water is approx 1,500 metres per second. So wavelength = speed/frequency = 2.94 metres.
That would also depend on the speed. Note that sound can go at quite different speeds, depending on the medium and the temperature. Use the formula speed (of sound) = frequency x wavelength. Solving for wavelength: wavelength = speed / frequency. If the speed is in meters / second, and the frequency in Hertz, then the wavelength will be in meters.
The frequency of a sound source is directly related to the wavelength and the speed of sound in air through the equation: speed of sound = frequency x wavelength. As the frequency of the sound increases, the wavelength decreases, and vice versa, provided the speed of sound remains constant in the medium.
The wavelength of sound can be calculated using the formula: wavelength = speed of sound / frequency. Assuming the speed of sound is around 343 m/s, we can calculate the wavelength of sound with a frequency of 539.8 Hz to be approximately 0.636 meters.
The wavelength of a sound wave can be calculated using the formula: wavelength = speed of sound / frequency. Assuming the speed of sound in air is around 343 m/s, the wavelength of a sound wave with a frequency of 42 Hz would be approximately 8.17 meters.
The wavelength of a sound wave at 16 kHz is approximately 2.15 cm. This can be calculated using the formula: wavelength = speed of sound / frequency. In this case, with the speed of sound in air at around 343 m/s.
The speed of sound depends on the medium the waves pass through, and is a fundamental property of the material. It itself cannot increase wave length as it is merely a property and not an active force that can modify anything.
The speed of a sound wave can be calculated using the formula: speed = frequency x wavelength. Plugging in the values given (250 Hz for frequency and 1.5m for wavelength), the speed of the sound wave would be 375 m/s.
The speed of a sound wave is determined by its frequency and wavelength through the equation: speed = frequency x wavelength. This means that as frequency increases, wavelength decreases, and vice versa, to maintain a constant speed.
If the frequency of a sound wave is multiplied by ten, the wavelength will decrease by a factor of ten. This is because the speed of sound in a given medium remains constant, so when frequency increases, wavelength decreases proportionally to maintain the speed of sound.
Yes. The wavelength of a sound is(speed of sound in air)/(frequency of the sound) .
Divide the speed of sound by the wavelength, to get the frequency. The period is the reciprocal of the frequency. The speed of sound in air is about 343 meters/second, but it depends on temperature. The speed of sound in other materials is quite different from the speed of sound in air.