Best Answer

2,000 kg-m/s "Apex"

Q: Spaceship 1 and Spaceship 2 have equal masses of 200 kg They collide Spaceship 1's final speed is 2 ms and Spaceship 2's final speed is 1 ms in the same direction What is their combined momentum?

Write your answer...

Submit

Still have questions?

Continue Learning about Physics

Momentum = (mass) x (velocity), in the same direction as the velocity.Spaceship-1 . . . Momentum = (300) x (2) = 600 kg-m/sec, in some direction.Spaceship-2 . . . Momentum = (300) x (1) = 300 kg-m/sec, in the same direction.Their combined momentum = 900 kg-m/sec, in their common direction.

1800 kg-m/sec 600 kg x 3 meters/sec (in the direction spaceship 2 was headed). Since the first spaceship had all the initial momentum, only the velocity of the combined mass will change.

momentum must be conserved momentum = mass*velocity initially momentum = 150*6 +150*0 = 900 kgms-1 final momentum = 300*combinedvelocity = 900 so the final velocity must be 3 ms-1

Because momentum is mass X velocity. Velocity has direction, otherwise it is speed.

In physics, momentum = mass x velocityhigher the mass or higher the velocity, higher is the momentum. Note, momentum is a vector quantity i.e it has both magnitude and direction. For instance, when two bodies A of velocity 3m/s and B of velocity 6m/s both of equal masses collide, A moves in the direction of B. Mathematically, the momentum of A is given a negative sign(-) meaning that the momentum of A is in the direction of B

Related questions

Momentum = (mass) x (velocity), in the same direction as the velocity.Spaceship-1 . . . Momentum = (300) x (2) = 600 kg-m/sec, in some direction.Spaceship-2 . . . Momentum = (300) x (1) = 300 kg-m/sec, in the same direction.Their combined momentum = 900 kg-m/sec, in their common direction.

2m/s

Momentum = (mass) x (velocity), in the same direction as the velocity.Spaceship-1 . . . Momentum = (300) x (3) = 900 kg-m/sec, in some direction.Spaceship-2 . . . Momentum = (300) x (2) = 600 kg-m/sec, in the same direction.Their combined momentum = 1,500 kg-m/sec, in their common direction.

1800 kg-m/sec 600 kg x 3 meters/sec (in the direction spaceship 2 was headed). Since the first spaceship had all the initial momentum, only the velocity of the combined mass will change.

900kg-m/s

Momentum is mass multiplied by velocity. The momentum of the two ships would be 300 x 2 = 600 kgm/s and 300 x 1 = 300 kgm/s. So the combined momentum of the two ships would be 900 kgm/s.

600kg-m/s apex miles

Momentum = (mass) x (velocity), in the same direction as the velocity.Spaceship-1 . . . Momentum = (300) x (3) = 900 kg-m/sec, in some direction.Spaceship-2 . . . Momentum = (300) x (2) = 600 kg-m/sec, in the same direction.Their combined momentum = 1,500 kg-m/sec, in their common direction.Apex- 900 kg-m/s

Momentum = (mass) x (velocity), in the same direction as the velocity.Spaceship-1 . . . Momentum = (300) x (2) = 600 kg-m/sec, in some direction.Spaceship-2 . . . Momentum = (300) x (1) = 300 kg-m/sec, in the same direction.Their combined momentum = 900 kg-m/sec, in their common directionbut the answer is 1500 kg-ms

Momentum = (mass) x (velocity), in the same direction as the velocity.Spaceship-1 . . . Momentum = (150) x (0) = 0 kg-m/sec, in some direction.Spaceship-2 . . . Momentum = (150) x (6) = 900 kg-m/sec, in the same direction.Their combined momentum = 900 kg-m/sec, in their common direction.

1,500 kg-m/s900 kg-m/s apex

The new speed for the combined masses will be one-half the original velocity of the moving spaceship, since the momentum is applied to a mass twice as large.