They are called simultaneous equations.
It means that the equations are actually both the same one. When they're graphed, they both turn out to be the same line.
A system of two linear equations in two unknowns can have three possible types of solutions: exactly one solution (when the lines intersect at a single point), no solutions (when the lines are parallel and never intersect), or infinitely many solutions (when the two equations represent the same line). Thus, there are three potential outcomes for such a system.
No, a linear equation in two variables typically has one unique solution, which represents the intersection point of two lines on a graph. However, if the equation represents the same line (as in infinitely many solutions) or if it is inconsistent (no solutions), then the type of solutions can vary. In general, a single linear equation corresponds to either one solution, no solutions, or infinitely many solutions when considering the same line.
Yes, you can determine the nature of a system of two linear equations by analyzing their slopes and intercepts. If the lines represented by the equations have different slopes, the system has one solution (they intersect at a single point). If the lines have the same slope but different intercepts, there is no solution (the lines are parallel). If the lines have the same slope and the same intercept, there are infinitely many solutions (the lines coincide).
No....not necessary
A system of linear equations.
Equations with the same solution are called dependent equations, which are equations that represent the same line; therefore every point on the line of a dependent equation represents a solution. Since there is an infinite number of points on a line, there is an infinite number of simultaneous solutions. For example, 2x + y = 8 4x + 2y = 16 These equations are dependent. Since they represent the same line, all points that satisfy either of the equations are solutions of the system. A system of linear equations is consistent if there is only one solution for the system. A system of linear equations is inconsistent if it does not have any solutions.
they have same slop.then two linear equations have infinite solutions
Two dependent linear equations are effectively the same equation - with their coefficients scaled up or down.
Simultaneous equations have the same solutions.
If the equations are linear, they may have no common solutions, one common solutions, or infinitely many solutions. Graphically, in the simplest case you have two straight lines; these can be parallel, intersect in a same point, or actually be the same line. If the equations are non-linear, they may have any amount of solutions. For example, two different intersecting ellipses may intersect in up to four points.
It means that the equations are actually both the same one. When they're graphed, they both turn out to be the same line.
A system of linear equations is two or more simultaneous linear equations. In mathematics, a system of linear equations (or linear system) is a collection of linear equations involving the same set of variables.
Simultaneous equations have the same solutions
Actually not. Two linear equations have either one solution, no solution, or many solutions, all depends on the slope of the equations and their intercepts. If the two lines have different slopes, then there will be only one solution. If they have the same slope and the same intercept, then these two lines are dependent and there will be many solutions (infinite solutions). When the lines have the same slope but they have different intercept, then there will be no point of intersection and hence, they do not have a solution.
Simultaneous equations have the same solutions.
The system of equations can have zero solutions, one solution, two solutions, any finite number of solutions, or an infinite number of solutions. If it is a system of LINEAR equations, then the only possibilities are zero solutions, one solution, and an infinite number of solutions. With linear equations, think of each equation describing a straight line. The solution to the system of equations will be where these lines intersect (a point). If they do not intersect at all (or maybe two of the lines intersect, and the third one doesn't) then there is no solution. If the equations describe the same line, then there will be infinite solutions (every point on the line satisfies both equations). If the system of equations came from a real world problem (like solving for currents or voltages in different parts of a circuit) then there should be a solution, if the equations were chosen properly.