answersLogoWhite

0


Best Answer

That means the same as solutions of other types of equations: a number that, when you replace the variable by that number, will make the equation true.Note that many trigonometric equations have infinitely many solutions. This is a result of the trigonometric functions being periodic.

User Avatar

Wiki User

7y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

7y ago

The solution to different equations will be different.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What are solutions of trigonometric equations?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Trigonometry

What is the term trigonometry identity?

Trigonometric identities are trigonometric equations that are always true.


Are trigonometric equations and trigonometric identities are the same thing?

In a trigonometric equation, you can work to find a solution set which satisfy the given equation, so that you can move terms from one side to another in order to achieve it (or as we say we operate the same things to both sides). But in a trigonometric identity, you only can manipulate separately each side, until you can get or not the same thing to both sides, that is to conclude if the given identity is true or false.


How do you simplify trigonometric expressions?

Use the trigonometric relations and identities.


What are the uses of trigonometry in various fields?

Scientific fields that make use of trigonometry include: acoustics, architecture, astronomy , cartography, civil engineering, geophysics, crystallography, electrical engineering, electronics, land surveying and geodesy, many physical sciences, mechanical engineering, machining, medical imaging , number theory, oceanography, optics, pharmacology, probability theory, seismology, statistics, and visual perception. Various types of equations can be solved using trigonometry. For example, a linear difference equation or differential equation with constant coefficients has solutions expressed in terms of the eigenvalues of its characteristic equation; if some of the eigenvalues are complex, the complex terms can be replaced by trigonometric functions of real terms, showing that the dynamic variable exhibits oscillations. Similarly, cubic equations with three real solutions have an algebraic solution that is unhelpful in that it contains cube roots of complex numbers; again an alternative solution exists in terms of trigonometric functions of real terms.


What does trigonometric identities all about?

They are true statements about trigonometric ratios and their relationships irrespective of the value of the angle.

Related questions

How do you solve trigonometric equations?

The answer depends on the nature of the equations.


What is the term trigonometry identity?

Trigonometric identities are trigonometric equations that are always true.


How can you tell when an equation in one variable has infinitely many solutions or no solutions?

There is no simple method. The answer depends partly on the variable's domain. For example, 2x = 3 has no solution is x must be an integer, or y^2 = -9 has no solution if y must be a real number but if it can be a complex number, it has 2 solutions.


What is equations that have the same solutions?

Simultaneous equations have the same solutions.


Are trigonometric identities important?

Yes. Trigonometric identities are extremely important when solving calculus equations, especially while integrating.


Why do you solve trigonometric equations?

Use trigonometric identities to simplify the equation so that you have a simple trigonometric term on one side of the equation and a simple value of the other. Then use the appropriate inverse trigonometric or arc function.


How do you answer equations?

The answers to equations are their solutions


How can you find out how many solutions an equation has?

By solving it. There is no single easy way to solve all equations; different types of equations required different methods. You have to learn separately how to solve equations with integer polynomials, rational equations (where polynomials can also appear in the denominator), equations with square roots and other roots, trigonometric equations, and others.Sometimes, the knowledge of a type of equations can help you quickly guess the number of solutions. Here are a few examples. An equation like:sin(x) = 0.5has an infinite number of solutions, because the sine function is periodic. An equation with a polynomial - well, in theory, you can factor a polynomial of degree "n" into "n" linear factors, meaning the polynomial can have "n" solutions. However, it may have multiple solutions, that is, some of the factors may be equal. Also, some of the solutions may be complex. A real polynomial of odd degree has at least one real solution.By solving it. There is no single easy way to solve all equations; different types of equations required different methods. You have to learn separately how to solve equations with integer polynomials, rational equations (where polynomials can also appear in the denominator), equations with square roots and other roots, trigonometric equations, and others.Sometimes, the knowledge of a type of equations can help you quickly guess the number of solutions. Here are a few examples. An equation like:sin(x) = 0.5has an infinite number of solutions, because the sine function is periodic. An equation with a polynomial - well, in theory, you can factor a polynomial of degree "n" into "n" linear factors, meaning the polynomial can have "n" solutions. However, it may have multiple solutions, that is, some of the factors may be equal. Also, some of the solutions may be complex. A real polynomial of odd degree has at least one real solution.By solving it. There is no single easy way to solve all equations; different types of equations required different methods. You have to learn separately how to solve equations with integer polynomials, rational equations (where polynomials can also appear in the denominator), equations with square roots and other roots, trigonometric equations, and others.Sometimes, the knowledge of a type of equations can help you quickly guess the number of solutions. Here are a few examples. An equation like:sin(x) = 0.5has an infinite number of solutions, because the sine function is periodic. An equation with a polynomial - well, in theory, you can factor a polynomial of degree "n" into "n" linear factors, meaning the polynomial can have "n" solutions. However, it may have multiple solutions, that is, some of the factors may be equal. Also, some of the solutions may be complex. A real polynomial of odd degree has at least one real solution.By solving it. There is no single easy way to solve all equations; different types of equations required different methods. You have to learn separately how to solve equations with integer polynomials, rational equations (where polynomials can also appear in the denominator), equations with square roots and other roots, trigonometric equations, and others.Sometimes, the knowledge of a type of equations can help you quickly guess the number of solutions. Here are a few examples. An equation like:sin(x) = 0.5has an infinite number of solutions, because the sine function is periodic. An equation with a polynomial - well, in theory, you can factor a polynomial of degree "n" into "n" linear factors, meaning the polynomial can have "n" solutions. However, it may have multiple solutions, that is, some of the factors may be equal. Also, some of the solutions may be complex. A real polynomial of odd degree has at least one real solution.


Do equations have solutions?

Equations do have solutions, sometimes they may be a little difficult to figure out.


If a system of equations is inconsitient how many solutions will it have?

If a system of equations is inconsistent, there are no solutions.


What are equations that have the same answer?

Simultaneous equations have the same solutions


Sin x cos x equals 0?

For the product to be zero, any of the factors must be zero, so you solve, separately, the two equations: sin x = 0 and: cos x = 0 Like many trigonometric equations, this will have an infinity of solutions, since sine and cosine are periodic functions.