## Abstract

The problem of estimating the function when using a homogeneous linear operator in a model with correlated noise is considered. The asymptotic properties of estimating risk upon the threshold wavelet-vaguelette decomposition of a signal are studied. The conditions under which the asymptotic normality of an unbiased risk estimate holds are given.

This is a preview of subscription content, access via your institution.

## References

- 1.
D. Donoho, “Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition,” Appl. Comput. Harmon. Anal.

**2**, 101–126 (1995). - 2.
D. Donoho and I. M. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage,” J. Amer. Stat. Assoc.

**90**, 1200–1224 (1995). - 3.
D. Donoho and I. M. Johnstone, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika

**81**, 425–455 (1994). - 4.
D. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, “Wavelet shringage: asymoptopia?,” J. R. Statist. Soc. Ser. B, No. 2, 301–369 (1995).

- 5.
N. Lee, PhD Thesis (Purdue Univ., West Lafayette, 1997).

- 6.
J. S. Marron, S. Adak, I. M. Johnstone, M. H. Neumann, P. Patil, “Exact risk analysis of wavelet regression,” J. Comput. Graph. Stat.

**7**, 278–309 (1998). - 7.
A. V. Markin, “Limit distribution of risk assessment in the thresholding processing of wavelet coefficients,” Inform. Primen.

**3**(4), 57–63 (2009). - 8.
A. V. Markin and O. V. Shestakov, “Consistency of risk estimation with thresholding of wavelet coefficients,” Mos. Univ. Comput. Math. and Cybern.

**34**, 22–30 (2010). - 9.
A. V. Markin and O. V. Shestakov, “Asymptotics of risk estimation in threshold processing of wavelet-vaguelette coefficients in a tomography problem,” Inform. Primen.

**4**(2), 36–45 (2010). - 10.
O. V. Shestakov, “Approximation of the distribution estimated risk of threshold processing of wavelet coefficients by a normal distribution with the use of the sample variance,” Inform. Primen.

**4**(4), 73–81 (2010). - 11.
O. V. Shestakov, “On the accuracy of approximation of the distribution of estimated risk of threshold processing of wavelet coefficients of a signal by a normal distribution in the case of an unknown noise level,” Sist. Sredstva Inf.

**22**(1), 142–152 (2012). - 12.
O. V. Shestakov, “Asymptotic normality of adaptive wavelet thresholding risk estimation,” Dokl. Math.

**86**(1), 556–558 (2012). - 13.
O. V. Shestakov, “Dependence of the limit distribution of the estimated risk of threshold processing of wavelet coefficients of a signal on the type of the estimated variance of noise in selection of the adaptive threshold,” T-Comm.-Telekomm. Transport, No. 1, 46–51 (2012).

- 14.
O. V. Shestakov, “Central limit theorem for the function of generalized cross-validation in threshold processing of wavelet coefficients,” Inform. Primen.

**7**(2), 40–49 (2013). - 15.
I. Daubechies,

*Ten Lectures on Wavelets*(SIAM, Philadelphia, 1992; NITS RKHD, Izhevsk-Moscow, 2001). - 16.
S. Mallat,

*A Wavelet Tour of Signal Processing*(Academic, New York, 1999). - 17.
A. Boggess and F. Narkowich,

*A First Course in Wavelets with Fourier Analysis*(Prentice Hall, Upper Saddle River, 2001). - 18.
M. S. Taqqu, “Weak convergence to fractional Brownian motion and to the Rosenblatt process,” Z. Wahrscheinlichkeitsth. Verw. Geb.

**31**, 287–302 (1975). - 19.
I. M. Johnstone and B. W. Silverman, “Wavelet threshold estimates for data sith correlated noise,” J. R. Statist. Soc. Ser. B

**59**, 319–351 (1997). - 20.
I. M. Johnstone, “Wavelet shrinkage for correlated data and inverse problems: adaptivity results,” Statist. Sinica

**9**, 51–83 (1999). - 21.
E. D. Kolaczyk, PhD Thesis (Stanford Univ., Stanford, 1994).

- 22.
R. C. Bradley, “Basic properties of strong mixing conditions. A survey and some open questions,” Probab. Surveys

**2**, 107–144 (2005). - 23.
M. Peligrad, “On the asymptotic normality of sequences of weak dependent random variables,” J. Theor. Probab.

**9**, 703–715 (1996).

## Author information

### Affiliations

### Corresponding author

## Additional information

Original Russian Text © A.A. Eroshenko, O.V. Shestakov, 2014, published in Vestnik Moskovskogo Universiteta. Vychislitel’naya Matematika i Kibernetika, 2014, No. 3, pp. 23–30.

## About this article

### Cite this article

Eroshenko, A.A., Shestakov, O.V. Asymptotic normality of estimating risk upon the wavelet-vaguelette decomposition of a signal function in a model with correlated noise.
*MoscowUniv.Comput.Math.Cybern.* **38, **110–117 (2014). https://doi.org/10.3103/S0278641914030042

Received:

Published:

Issue Date:

### Keywords

- Wavelets
- homogeneous linear operator
- thresholding
- unbiased risk estimate
- correlated noise
- asymptotic normality