answersLogoWhite

0

At right angles - in two or more dimensions.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What does the mean of product of two orthogonal matrix is orthogonal in terms of rotation?

The mean of the product of two orthogonal matrices, which represent rotations, is itself an orthogonal matrix. This is because the product of two orthogonal matrices is orthogonal, preserving the property that the rows (or columns) remain orthonormal. When averaging these rotations, the resulting matrix maintains orthogonality, indicating that the averaged transformation still represents a valid rotation in the same vector space. Thus, the mean of the rotations captures a new rotation that is also orthogonal.


What is a vector which is orthogonal to the other vectors and is coplanar with the other vectors called?

In a plane, each vector has only one orthogonal vector (well, two, if you count the negative of one of them). Are you sure you don't mean the normal vector which is orthogonal but outside the plane (in fact, orthogonal to the plane itself)?


Prove that the product of two orthogonal matrices is orthogonal and so is the inverse of an orthogonal matrix What does this mean in terms of rotations?

To prove that the product of two orthogonal matrices ( A ) and ( B ) is orthogonal, we can show that ( (AB)^T(AB) = B^TA^TA = B^T I B = I ), which confirms that ( AB ) is orthogonal. Similarly, the inverse of an orthogonal matrix ( A ) is ( A^{-1} = A^T ), and thus ( (A^{-1})^T A^{-1} = AA^T = I ), proving that ( A^{-1} ) is also orthogonal. In terms of rotations, this means that the combination of two rotations (represented by orthogonal matrices) results in another rotation, and that rotating back (inverting) maintains orthogonality, preserving the geometric properties of rotations in space.


Can the difference of 2 vectors be orthogonal?

The answer will depend on orthogonal to WHAT!


What does Transforming Mathematics Instruction mean?

it means changing the mathematics information

Related Questions

What is a word using the root word ortho?

Three of them are "orthogonal", "orthodontist", and "orthopedic", and "orthogonal" is a very important word in mathematics. For one example, two vectors are orthogonal whenever their dot product is zero. "Orthogonal" also comes into play in calculus, such as in Fourier Series.


What is orthogonal?

In mathematics, "orthogonal" means perpendicular or independent. In linear algebra, vectors are orthogonal if their dot product is zero, indicating they are at right angles to each other. In statistics, orthogonal variables are uncorrelated, making them useful for multi-variable analysis.


What is orthogonal wave?

An orthogonal wave is a type of wave that oscillates perpendicular to a given axis or plane. In mathematics, orthogonal waves are used to describe waves that are mutually perpendicular or independent of each other. They are often employed in mathematical and physics contexts to model complex wave interactions.


What is a jocobi polynomial?

In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) are a class of classical orthogonal polynomials.


What is a vector which is orthogonal to the other vectors and is coplanar with the other vectors called?

In a plane, each vector has only one orthogonal vector (well, two, if you count the negative of one of them). Are you sure you don't mean the normal vector which is orthogonal but outside the plane (in fact, orthogonal to the plane itself)?


What is the definition of orthogonal signal space?

Orthogonal signal space is defined as the set of orthogonal functions, which are complete. In orthogonal vector space any vector can be represented by orthogonal vectors provided they are complete.Thus, in similar manner any signal can be represented by a set of orthogonal functions which are complete.


Can the difference of 2 vectors be orthogonal?

The answer will depend on orthogonal to WHAT!


What is mean by orthogonal frequency code division multiplexing in wireless communication?

Orthogonal frequency division multiplexing is special case of frequency division multiplexing where a ling serial data streams are divided into parallel data streams and each data stream is multiplied either by orthogonal frequency or code. when multiplied by code known as frequency code division multiplexing and when multiplied by orthogonal frequency then know as orthogonal frequency division multiplexing


What is orthogonal planning in ancient Greece?

it is planning of orthogonal planning


When was Orthogonal - novel - created?

Orthogonal - novel - was created in 2011.


What is the orthogonal planning in ancient Greece?

it is planning of orthogonal planning


Self orthogonal trajectories?

a family of curves whose family of orthogonal trajectories is the same as the given family, is called self orthogonal trajectories.