answersLogoWhite

0


Best Answer

The wavelength is halved.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What happens to the wavelength of a wave on a string when the frequency is doubled?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What happens to the speed of a wave on a string when the frequency is doubled?

I believe that the speed will remain constant, and the new wavelength will be half of the original wavelength. Speed = (frequency) x (wavelength). This depends on the method used to increase the frequency. If the tension on the string is increased while maintaining the same length (like tuning up a guitar string), then the speed will increase, rather than the wavelength.


When you push down on a string to make it shorter what happens to the wavelength?

The wavelength gets shorter.


What is the wavelength of a sound made by a violin string that has a frequency of 640 Hz if the sound is traveling at 350 meters per second?

Wavelength = speed/frequency = 350/640 = 54.7 centimeters (rounded)


What happens to the frequency of a pendulum if you shorten the string?

it will moe faster


Is a string vibrating at the fundamental frequency the length of half the wavelength?

This question can't be answered as asked. A string vibrating at its fundamental frequency has nothing to do with the speed of the produced sound through air, or any other medium. Different mediums transmit sound at different speeds. The formula for wavelength is L = S/F, were L is the wavelength, S is the speed through the medium and F is the frequency. Therefore, the wavelength depends on the speed of sound through the medium and directly proportional to the speed and inversely proportional to the frequency.


Waves with a frequency of 2.0 hertz are generated along a string The waves have a wavelength of 0.50 meters The speed of the waves along the string is?

v=f*wavelength v=2*.5 v=1 m/s


The wavelength of a wave on a string is 1.2 meters If the speed of the wave is 60 meters per second what is its frequency?

speed = frequency × wave_length → frequency = speed ÷ wave_length = 1.2 m/s ÷ 60 m = 50 Hz.


The string of a piano that produces the note middle C vibrates with a frequency of 262 Hz. If the sound waves produced by this string have a wavelength in air of 1.30 m what is the sound waves?

Question is to be corrected as to find the velocity of the sound waves Formula for velocity of the wave = frequency x wavelength Given frequency = 262 Hz and wavelength = 1.3 m So velocity = 262 x 1.3 = 340.6 m/s


What happens to a pitch if you shorten the string?

The frequency of a pendulum is inversely proportional to the square root of its length. If you want to increase the frequency of a pendulum by a factor of 10, you make it 99% shorter.


What happens to the speed of a wave on a string when the frequency is lowered?

Frequence of a wave is how often a string oscillates on a specific point between crests. So if the speed of the string is lowered, the crests of the wave will pass the point less often, causing lower frequency


What is the wavelength of sound waves produced by a guitar string vibrating at 440 Hz?

Wavelength = velocity of sound in the medium / frequency Here velocity is not given. Let it be 330 m/s So required wavelength = 330/440 = 3/4 = 0.75 m


Why does putting pressure on a string in a stringed instrument make a different sound?

"Pressure" is not what causes strings to produce sound. It's "tension" which does that. Adjusting the tuners either increases or decreases the tension, thus altering the audible pitch. Bending the strings also increases the tension. The sound is due to the vibration of the strings. Greater tension causes a shorter, higher frequency wavelength or amplitude which produces a higher pitch. Lesser tension causes a longer, lower frequency wavelength which produces a lower pitch. Depressing the strings onto the fingerboard effectively shortens the length of the string. The more a string is shortened, the shorter its vibrational wavelength and the higher its frequency will become. The location along the fingerboard at which the string is depressed serves the same function as does the nut when a open string is sounded.