Best Answer

Assuming that you want (ab^3)^4, which is impossible to ask given the crap browser used by Answers, the solution is A^4b^12.

Q: What is (ab3)4?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

Related questions

There are some cheat codes, that you can use only once. Example: if somebody have used code ABCD-1234-AB34, you can't use it again, so you must look to different code.

Postcodes for Scotland: Aberdeen: AB: AB10; AB11; AB12; AB13; AB14; AB15; AB16; AB21; AB22; AB23; AB24; AB25; AB30; AB31; AB32; AB33; AB34; AB35; AB36; AB37; AB38; AB39; AB41; AB42; AB43; AB44; AB45; AB51; AB52; AB53; AB54; AB55; AB56 Dundee: DD: DD1; DD2; DD3; DD4; DD5; DD6; DD7; DD8; DD9; DD10; DD11 Dumfries: DG: DG1; DG2; DG3; DG4; DG5; DG6; DG7; DG8; DG9; DG10; DG11; DG12; DG13; DG14; DG16 Edinburgh: EH: EH1; EH2; EH3; EH4; EH5; EH6; EH7; EH8; EH9; EH10; EH11; EH12; EH13; EH14; EH15; EH16; EH17; EH95; EH99 Falkirk: FK: FK1; FK2; FK3; FK4; FK5; FK6; FK7; FK8; FK9; FK10; FK11; FK12; FK13; FK14; FK15; FK16; FK17; FK18; FK19; FK20; FK21 Glasgow: G: G1; G2; G3; G4; G5; G11; G12; G13; G14; G15; G20; G21; G22; G23; G31; G32; G33; G34; G40; G41; G42; G43; G44; G45; G46; G51; G52; G53; G58; G60; G61; G62; G63; G64; G65; G66; G67; G68; G69; G70; G71; G72; G73; G74; G75; G76; G77; G78; G79; G81; G82; G83; G84 Hebrides: HS: HS1; HS2; HS3; HS4; HS5; HS6; HS7; HS8; HS9 Inverness: IV: IV1; IV2; IV3; IV4; IV5; IV6; IV7; IV8; IV9; IV10; IV11; IV12; IV13; IV14; IV15; IV16; IV17; IV18; IV19; IV20; IV21; IV22; IV23; IV24; IV25; IV26; IV27; IV28; IV30; IV31; IV32; IV36; IV40; IV41; IV42; IV43; IV44; IV45; IV46; IV47; IV48; IV49; IV51; IV52; IV53; IV54; IV55; IV56; IV63 Kilmarnock: KA: KA1-KA3 Kirkcaldy: KY: KY1; KY2; KY3; KY4; KY5; KY6; KY7; KY8; KY9; KY10; KY11; KY12; KY13; KY14; KY15; KY16; KY99 Motherwell: ML: ML1; ML2; ML3; ML4; ML5; ML6; ML7; ML8; ML9; ML10; ML11; ML12 Paisley: PA: PA1-PA38; PA41-PA49; PA60-PA78 Perth: PH: PH1-PH26; PH30-PH50 Galashiels: TD: TD1; TD2; TD3; TD4; TD5; TD6; TD7; TD8; TD9; TD10; TD11; TD12; TD13; TD14; TD15