Study guides

Q: What is the rule you use to determine the number of significant figures in the results of addition and subtraction?

Write your answer...

Submit

Related questions

For multiplication/division, use the least number of significant figures (ie 6.24 * 2.0 = 12). For addition subtraction, use the least specific number (ie 28.24 - 2.1 = 26.1)

addition multiplication division subtraction

The smallest significant place of the numbers is rounded in either addition or subtraction (for example: 2.038 +0.12 +0.1 =2.3).

= significant figures = and got For addition and subtraction, the result should have as many decimal places as the measured number with the smallest number of decimal places.

multiplication/division: least number of significant figures addition/subtraction: least number of numbers to the right of decimal point

It depends on the operation - for multiplication, the ammount of significant figures is the same as the multiple that has the least. Same for division. For subtraction and addition, the significant figures are decided by the least ammount of spaces past the decimal in the answer. For example, 30.7+2.111111111 would be 30.8

Round to the least precise number. 3.4 + 3= 6.4 which becomes 6.

The simple rule is: no more significant figures than the least accurate of the values in the computation. For multiplication and division, the result should have as many significant figures as the measured number with the smallest number of significant figures. For addition and subtraction, the result should have as many decimal places as the measured number with the smallest number of decimal places. (Rounding off can be tricky, but that would be another thread)

3 of them.

4, for addition and subtraction you add or subtract the numbers and round to the smallest digit of the number that is less specific. In this case the 6 in 324.6.

The least number of significant figures in any number of the problem determines the number of significant figures in the answer.

The leading zeros are never counted as significant figures, therefore the answer is two.

You use the most figures that you can accurately determine.

Three, so the answer would be 3.96. Always use the number with the smallest amount of significant figures to determine the amount of significant figures will be in the solution.

1.056ml has four significant figures. A significant figure is any non-zero digit or any embedded or trailing zero. Leading zeros are not significant.

The rules for identifying significant figures when writing or interpreting numbers are as follows: All non-zero digits are considered significant. For example, 91 has two significant figures (9 and 1), while 123.45 has five significant figures (1, 2, 3, 4 and 5). Zeros appearing anywhere between two non-zero digits are significant. Example: 101.1203 has seven significant figures: 1, 0, 1, 1, 2, 0 and 3. Leading zeros are not significant. For example, 0.00052 has two significant figures: 5 and 2. Trailing zeros in a number containing a decimal point are significant. For example, 12.2300 has six significant figures: 1, 2, 2, 3, 0 and 0. The number 0.000122300 still has only six significant figures (the zeros before the 1 are not significant). In addition, 120.00 has five significant figures since it has three trailing zeros.

The rules for identifying significant figures when writing or interpreting numbers are as follows: All non-zero digits are considered significant. For example, 91 has two significant figures (9 and 1), while 123.45 has five significant figures (1, 2, 3, 4 and 5). Zeros appearing anywhere between two non-zero digits are significant. Example: 101.1203 has seven significant figures: 1, 0, 1, 1, 2, 0 and 3. Leading zeros are not significant. For example, 0.00052 has two significant figures: 5 and 2. Trailing zeros in a number containing a decimal point are significant. For example, 12.2300 has six significant figures: 1, 2, 2, 3, 0 and 0. The number 0.000122300 still has only six significant figures (the zeros before the 1 are not significant). In addition, 120.00 has five significant figures since it has three trailing zeros.

The rules for identifying significant figures when writing or interpreting numbers are as follows: All non-zero digits are considered significant. For example, 91 has two significant figures (9 and 1), while 123.45 has five significant figures (1, 2, 3, 4 and 5). Zeros appearing anywhere between two non-zero digits are significant. Example: 101.1203 has seven significant figures: 1, 0, 1, 1, 2, 0 and 3. Leading zeros are not significant. For example, 0.00052 has two significant figures: 5 and 2. Trailing zeros in a number containing a decimal point are significant. For example, 12.2300 has six significant figures: 1, 2, 2, 3, 0 and 0. The number 0.000122300 still has only six significant figures (the zeros before the 1 are not significant). In addition, 120.00 has five significant figures since it has three trailing zeros.

4 of them.

The rules for identifying significant figures when writing or interpreting numbers are as follows: 1. All non-zero digits are considered significant. For example, 91 has two significant figures (9 and 1), while 123.45 has five significant figures (1, 2, 3, 4 and 5). 2. Zeros appearing anywhere between two non-zero digits are significant. Example: 101.1203 has seven significant figures: 1, 0, 1, 1, 2, 0 and 3. 3. Leading zeros are not significant. For example, 0.00052 has two significant figures: 5 and 2. 4. Trailing zeros in a number containing a decimal point are significant. For example, 12.2300 has six significant figures: 1, 2, 2, 3, 0 and 0. The number 0.000122300 still has only six significant figures (the zeros before the 1 are not significant). In addition, 120.00 has five significant figures since it has three trailing zeros.

Trailing zeros in a number containing a decimal point are significant. For example, 12.2300 has six significant figures: 1, 2, 2, 3, 0 and 0. The number 0.000122300 still has only six significant figures (the zeros before the 1 are not significant). In addition, 120.00 has five significant figures since it has three trailing zeros.

The least number of significant figures in any number of the problem determines the number of significant figures in the answer.

4 of them.

Three - all nonzero numbers are significant.

0.023kg has two significant figures. All non-zero digits are always significant. Leading zeroes, which only determine the decimal place, are never significant.