1 and 4(8th). this can be simplified to 1 and 1/2.
1-3/4 is 7.7% greater than 1-5/8 .
2 and 1/8 divided by 3/4= 2 and 5/6 (or 2.833333333333 in decimal form).
5/6 * 1/8 = (5*1)/(6*8) = 5/48
There are 64 subsets, and they are:{}, {A}, {1}, {2}, {3}, {4}, {5}, {A,1}, {A,2}, {A,3}, {A,4}, {A,5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3, 5}, {4,5}, {A, 1, 2}, {A, 1, 3}, {A, 1, 4}, {A, 1, 5}, {A, 2, 3}, {A, 2, 4}, {A, 2, 5}, {A, 3, 4}, {A, 3, 5}, {A, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {A, 1, 2, 3}, {A, 1, 2, 4}, {A, 1, 2, 5}, {A, 1, 3, 4}, {A, 1, 3, 5}, {A, 1, 4, 5}, {A, 2, 3, 4}, {A, 2, 3, 5}, {A, 2, 4, 5}, {A, 3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {A, 1, 2, 3, 4}, {A, 1, 2, 3, 5}, {A, 1, 2, 4, 5}, {A, 1, 3, 4, 5}, {A, 2, 3, 4, 5}, {1, 2, 3, 4, 5} {A, 1, 2, 3,,4, 5} .
3 × 3/5 = 3/1 × 3/5 = (3×3)/(1) = 9/5 = (1×5+4)/5 = 1 4/5.
1-3/4 is 7.7% greater than 1-5/8 .
It is: 1 1 2 3 5 8 13 and 21 which is the 8th term
(5/6) / (1/8) = (5/6) x (8/1) = (40/6) = (20/3) = 6 and 2/3
The sum of 1/2 and 5/8 is 1 1/8
2 and 1/8 divided by 3/4= 2 and 5/6 (or 2.833333333333 in decimal form).
5/(√3 - 1)= 5(√3 + 1)/(√3 - 1)(√3 + 1)= (5√3 + 5)/[(√3)2 - 12)= (5√3 + 5)/(3 - 1)= 5√3 + 5)/2= 5√3/2 + 1/2
1/8 of 24 is 3
5/6 * 1/8 = (5*1)/(6*8) = 5/48
To divide by a fraction, multiply by its reciprocal. In this instance, 3 / 1/5 = 3 x 5 = 15
Several solutions. 17 + 1 + 1 + 1 + 1 15 + 3 + 1 + 1 + 1 13 + 5 + 1 + 1 + 1, 13 + 3 + 3 + 1 + 1 11 + 7 + 1 + 1 + 1, 11 + 5 + 3 + 1 + 1, 11 + 3 + 3 + 3 + 1 9 + 9 + 1 + 1 + 1, 9 + 7 + 3 + 1 + 1, 9 + 5 + 5 + 1 + 1, 9 + 5 + 3 + 3 + 1 7 + 7 + 5 + 1 + 1, 7 + 7 + 3 + 3 + 1, 7 + 5 + 5 + 3 + 1, 7 + 5 + 3 + 3 + 3 5 + 5 + 5 + 5 + 1 Note that there is only one solution that does not include 1, namely 7 + 5 + 3 + 3 + 3
There are 64 subsets, and they are:{}, {A}, {1}, {2}, {3}, {4}, {5}, {A,1}, {A,2}, {A,3}, {A,4}, {A,5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3, 5}, {4,5}, {A, 1, 2}, {A, 1, 3}, {A, 1, 4}, {A, 1, 5}, {A, 2, 3}, {A, 2, 4}, {A, 2, 5}, {A, 3, 4}, {A, 3, 5}, {A, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {A, 1, 2, 3}, {A, 1, 2, 4}, {A, 1, 2, 5}, {A, 1, 3, 4}, {A, 1, 3, 5}, {A, 1, 4, 5}, {A, 2, 3, 4}, {A, 2, 3, 5}, {A, 2, 4, 5}, {A, 3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {A, 1, 2, 3, 4}, {A, 1, 2, 3, 5}, {A, 1, 2, 4, 5}, {A, 1, 3, 4, 5}, {A, 2, 3, 4, 5}, {1, 2, 3, 4, 5} {A, 1, 2, 3,,4, 5} .
(3 1/5) - (1 3/5) : If we borrow 1 from 3, then 3 1/5 becomes 2 6/5 [1 = 5/5, and 1/5+5/5 = 6/5]. Now can subtract 3/5 from 6/5, and subtract 1 from 2:6/5 - 3/5 = 3/5. 2-1 = 1. So the answer is 1 3/5.