answersLogoWhite

0

An irrational number is a real number that cannot be expressed as a simple fraction, meaning it cannot be written as a ratio of two integers. These numbers have non-repeating, non-terminating decimal representations. Examples of Irrational Numbers include the square root of 2, pi, and the golden ratio. They are contrasted with rational numbers, which can be expressed as fractions.

User Avatar

ProfBot

5mo ago

What else can I help you with?

Related Questions

Is this statement true All real numbers are irrational numbers?

No. The statement is wrong. It does not hold water.


What Statement about irrational numbers?

Irrational numbers can't be expressed as fractions .


What statement about rational and irrational numbers is always true?

Rational numbers can be expressed as fractions whereas irrational numbers can't be expressed as fractions


What are the solutions of irrational numbers?

They are irrational numbers!


What are irrational numbers and why are they irrational?

They are numbers that are infinite


Every irrational number can be expressed as a quotient of integers?

WRONG!!!!! Irrational numbers CANNOT be expressed as a quotient(fraction). Casually, irrational numbers are those were the decimals go to infinity AND there is no regular order in the decimal digits. e.g. pi = 3.1415192.... is Irrational 3.3333.... is rational.


Are rational numbers is an irrational numbers?

yes * * * * * No. Rational and irrational numbers are two DISJOINT subsets of the real numbers. That is, no rational number is irrational and no irrational is rational.


Properties of irrational numbers?

properties of irrational numbers


Can you add two irrational numbers to get a rational number?

Yes Yes, the sum of two irrational numbers can be rational. A simple example is adding sqrt{2} and -sqrt{2}, both of which are irrational and sum to give the rational number 0. In fact, any rational number can be written as the sum of two irrational numbers in an infinite number of ways. Another example would be the sum of the following irrational quantities [2 + sqrt(2)] and [2 - sqrt(2)]. Both quantities are positive and irrational and yield a rational sum. (Four in this case.) The statement that there are an infinite number of ways of writing any rational number as the sum of two irrational numbers is true. The reason is as follows: If two numbers sum to a rational number then either both numbers are rational or both numbers are irrational. (The proof of this by contradiction is trivial.) Thus, given a rational number, r, then for ANY irrational number, i, the irrational pair (i, r-i) sum to r. So, the statement can actually be strengthened to say that there are an infinite number of ways of writing a rational number as the sum of two irrational numbers.


Are imaginary numbers irrational numbers?

No. Irrational numbers are real numbers, therefore it is not imaginary.


Is it true that no irrational numbers are whole numbers?

Yes, no irrational numbers are whole numbers.


If you add two irrational numbers do you get an irrational number?

Not necessarily. The sum of two irrational numbers can be rational or irrational.