answersLogoWhite

0


Best Answer

It is 2, assuming the pattern is repeated as given. 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1...

If the intended pattern is to continue to subtract 1 from the last number, then the 5479th digit of the pattern will be -5470.

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the 5479th digit of the pattern 8 7 6 5 4 3 2 1?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the next number 1 to 14 2 to 16 3 to 18 4 to 20?

The next set in the pattern would be 5 to 22. The pattern is to increase the first digit by 1, second digit by 2.


What is the greatest possible product of a 2 digit and a 1 digit number?

Highest 2-digit number = 99 Highest 1-digit number = 9 Highest possible sum from 2, 2-digit numbers = 198 Highest possible sum from 2, 1-digit numbers = 18


What is the unit’s digit in the expansion of 2 raised to 725?

The unit's digit in the expansion of 2 raised to the 725th power is 8. This can be determined by using the concept of the "unit's digit law". This law states that the units digit of a number raised to any power is the same as the units digit of the number itself. In this case, the number is 2, which has a units digit of 2, so the units digit of 2 to the 725th power is also 2. However, this is not the final answer. To get the unit's digit of 2 to the 725th power, we must use the "repeating pattern law". This law states that when a number is raised to any power, the unit's digit will follow a repeating pattern. For 2, this pattern is 8, 4, 2, 6. This means that the units digit of 2 to any power will follow this pattern, repeating every 4 powers. So, if we look at the 725th power of 2, we can see that it is in the 4th cycle of this repeating pattern. This means that the units digit of 2 to the 725th power is 8.


What is the greatest product of a 2 digit number multiplied by a 1 digit number?

2 digit number


How do you find the unit digit of 312 power 6?

Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.

Related questions

What is the next number 1 to 14 2 to 16 3 to 18 4 to 20?

The next set in the pattern would be 5 to 22. The pattern is to increase the first digit by 1, second digit by 2.


What is the greatest possible product of a 2 digit and a 1 digit number?

Highest 2-digit number = 99 Highest 1-digit number = 9 Highest possible sum from 2, 2-digit numbers = 198 Highest possible sum from 2, 1-digit numbers = 18


What is the unit’s digit in the expansion of 2 raised to 725?

The unit's digit in the expansion of 2 raised to the 725th power is 8. This can be determined by using the concept of the "unit's digit law". This law states that the units digit of a number raised to any power is the same as the units digit of the number itself. In this case, the number is 2, which has a units digit of 2, so the units digit of 2 to the 725th power is also 2. However, this is not the final answer. To get the unit's digit of 2 to the 725th power, we must use the "repeating pattern law". This law states that when a number is raised to any power, the unit's digit will follow a repeating pattern. For 2, this pattern is 8, 4, 2, 6. This means that the units digit of 2 to any power will follow this pattern, repeating every 4 powers. So, if we look at the 725th power of 2, we can see that it is in the 4th cycle of this repeating pattern. This means that the units digit of 2 to the 725th power is 8.


What is the greatest product of a 2 digit number multiplied by a 1 digit number?

2 digit number


6 digit combination from 1 to 42?

There are 28706 such combinations. 5456 of these comprise three 2-digit numbers, 19008 comprise two 2-digit numbers and two 1-digit numbers, 4158 comprise one 2-digit number and four 1-digit numbers and 84 comprise six 1-digit numbers.


How many 2-digit numbers contain digit 1?

1


How do you find the unit digit of 312 power 6?

Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.


How many 5 digit combinations for numbers 1- 25?

There are 9 1-digit numbers and 16-2 digit numbers. So a 5 digit combination is obtained as:Five 1-digit numbers and no 2-digit numbers: 126 combinationsThree 1-digit numbers and one 2-digit number: 1344 combinationsOne 1-digit numbers and two 2-digit numbers: 1080 combinationsThat makes a total of 2550 combinations. This scheme does not differentiate between {13, 24, 5} and {1, 2, 3, 4, 5}. Adjusting for that would complicate the calculation considerably and reduce the number of combinations.


Why multiplying a 2-digit and 3-digit numbers are important?

-1


How do you change decimal into binary?

You repetitively divide the number by two, taking the remainder as the digit (in binary). When you divide by 2, the remainder will either be 0 or 1.Example: convert 23 (base 10) to binary:23/2 = 11, remainder 1 (this is the ones digit)11/2 = 5, remainder 1 (this is the twos digit)5/2 = 2, remainder 1, (this is the fours digit)2/1 = 1, remainder 0, (this is the eights digit)1/2 = 0, remainder 1, (this is the sixteens digit). So now combine the digits (sixteens is the highest digit in this number):23 (base 10) = 10111 (base 2)


How to do 3 digit division?

Yes. By 1 digit, 2 digit and some even by other 3 digit numbers.


What is the leading digit for 2561?

1