Study guides

Q: What is the difference between an arithmetic series and an arithmetic sequence?

Write your answer...

Submit

Related questions

An arithmetic series is a fairly similar to an arithmetic sequence except for the fact that in a series you are adding the numbers in between, not putting commas. Example: Sequence 1,3,5,7,.........n Series 1+3+5+7+..........+n Hope this helped(:

The difference between each number in an arithmetic series

Yes, with a difference of zero between terms. It is also a geometric series, with a ratio of 1 in each case.

An arithmetic series is the sequence of partial sums of an arithmetic sequence. That is, if A = {a, a+d, a+2d, ..., a+(n-1)d, ... } then the terms of the arithmetic series, S(n), are the sums of the first n terms and S(n) = n/2*[2a + (n-1)d]. Arithmetic series can never converge.A geometric series is the sequence of partial sums of a geometric sequence. That is, if G = {a, ar, ar^2, ..., ar^(n-1), ... } then the terms of the geometric series, T(n), are the sums of the first n terms and T(n) = a*(1 - r^n)/(1 - r). If |r| < 1 then T(n) tends to 1/(1 - r) as n tends to infinity.

Succession of numbers of which one number is designated as the first, other as the second, another as the third and so on gives rise to what is called a sequence. Sequences have wide applications. In this lesson we shall discuss particular types of sequences called arithmetic sequence, geometric sequence and also find arithmetic mean (A.M), geometric mean (G.M) between two given numbers. We will also establish the relation between A.M and G.M

The question needs to be a bit more specific than that!

This sequence is an arithmetic series that makes use of another series. This sequence advances by adding the series 4, 11, 21, 34, and 50 to the initial terms. This secondary series has a difference of 7, 10, 13 and 16 which advance by terms of 3. So the next three numbers in the primary sequence are 190, 281 and 397.

It is an arithmetic sequence. To differentiate arithmetic from geometric sequences, take any three numbers within the sequence. If the middle number is the average of the two on either side then it is an arithmetic sequence. If the middle number squared is the product of the two on either side then it is a geometric sequence. The sequence 0, 1, 1, 2, 3, 5, 8 and so on is the Fibonacci series, which is an arithmetic sequence, where the next number in the series is the sum of the previous two numbers. Thus F(n) = F(n-1) + F(n-2). Note that the Fibonacci sequence always begins with the two numbers 0 and 1, never 1 and 1.

Arithmetic, common difference 5.5

Progression is derived from "Progress", means its a series which have only +ve increasing values. But the Series may have negative values.

An arithmetic series is the sum of the terms in an arithmetic progression.

You didn't say the series (I prefer to use the word sequence) of even numbers are consecutive even numbers, or even more generally an arithmetic sequence. If we are not given any information about the sequence other than that each member happens to be even, there is no formula for that other than the fact that you can factor out the 2 from each member and add up the halves, then multiply by 2: 2a + 2b + 2c = 2(a + b + c). If the even numbers are an arithmetic sequence, you can use the formula for the sum of an arithmetic sequence. Similarly if they are a geometric sequence.

who discovered in arithmetic series

AP - Arithmetic ProgressionGP - Geometric ProgressionAP:An AP series is an arithmetic progression, a sequence of numbers such that the difference between the consecutive terms is constant. For instance, the sequence 3, 5, 7, 9, 11, 13, … is an arithmetic progression with common difference 2. If the initial term of an arithmetic progression is and the common difference of successive members is d, then the nth term of the sequence is given by:and in generalA finite portion of an arithmetic progression is called a finite arithmetic progression and sometimes just called an arithmetic progression.The behavior of the arithmetic progression depends on the common difference d. If the common difference is:Positive, the members (terms) will grow towards positive infinity.Negative, the members (terms) will grow towards negative infinity.The sum of the members of a finite arithmetic progression is called an arithmetic series.Expressing the arithmetic series in two different ways:Adding both sides of the two equations, all terms involving d cancel:Dividing both sides by 2 produces a common form of the equation:An alternate form results from re-inserting the substitution: :In 499 AD Aryabhata, a prominent mathematician-astronomer from the classical age of Indian mathematics and Indian astronomy, gave this method in the Aryabhatiya (section 2.18) .[1]So, for example, the sum of the terms of the arithmetic progression given by an = 3 + (n-1)(5) up to the 50th term isGP:A GP is a geometric progression, with a constant ratio between successive terms. For example, the series is geometric, because each successive term can be obtained by multiplying the previous term by 1 / 2.Geometric series are one of the simplest examples of infinite series with finite sums, although not all of them have this property. Historically, geometric series played an important role in the early development of calculus, and they continue to be central in the study of convergence of series. Geometric series are used throughout mathematics, and they have important applications in physics, engineering, biology, economics, computer science, queuing theory, and finance.

A series is a special case of a sequence where the n'th term is the sum of n numbers a1, a2, ..., an. In other words, it is a sequence in the form S1 = a1 S2 = a1 + a2 S3 = a1 + a2 + a3 ... Sn = a1 + a2 + ... + an

Nth number in an arithmetic series equals 'a + nd', where 'a' is the first number, 'n' signifies the Nth number and d is the amount by which each term in the series is incremented. For the 5th term it would be a + 5d

In an arithmetic series, each term is defined by a fixed value added to the previous term. This fixed value (common difference) may be positive or negative.In a geometric series, each term is defined as a fixed multiple of the previous term. This fixed value (common ratio) may be positive or negative.The common difference or common ratio can, technically, be zero but they result in pointless series.

what is the difference between N series and C series in nokia mobile phones

A series is a sequence of numbers that follows an identifiable pattern. There are two basic forms of series: Arithmetic, where the difference between successive terms is the same number. 1, 4, 7, 10, 13, 16, 19, 21 is an arithmetic series, each successive term is 3 larger than the previous term Geometric, were successive terms are achieved by multiplying each term by the same number 1, 2, 4, 8, 16, 32, 64, 128 is a geometric series, each successive term is the result of multiplying the previous term by 2

This is an arithmetic series where each number is half the previous number. The sequence is 140, 70, 35, 17.5, 8.75, 4.375

The series appears to be an arithmetic series in which the n'th term is 1.5 + (n - 1)2.5. If so, the next two terms are 11.5 and 14.

That refers to the sum of an arithmetic series.

Arithmetic, you ADD the same number each time, eg. 2, 5, 8, 11 etc. Geometric, you MULTIPLY by the same number each time, eg. 2, 6, 18, 54 etc.

difference between series is one pathway through circuit,difference between parralal is more then one pathway through circuit.

-5 19 43 67 ...This is an arithmetic sequence because each term differs from the preceding term by a common difference, 24.In order to find the sum of the first 25 terms of the series constructed from the given arithmetic sequence, we need to use the formulaSn = [2t1 + (n - 1)d] (substitute -5 for t1, 25 for n, and 24 for d)S25 = [2(-5) + (25 - 1)24]S25 = -10 + 242S25 = 566Thus, the sum of the first 25 terms of an arithmetic series is 566.