answersLogoWhite

0

In cases wherethe dependent variable can take any numerical value for a given set of independent variables multiple regression is used.But in cases when the dependent variable is qualitative(dichotomous,polytomous)then logistic regression is used.In Multiple regression the dependent variable is assumed to follow normal distribution but in case of logistic regression the dependent variablefollows bernoulli distribution(if dichotomous) which means it will be only0 or 1.

User Avatar

Wiki User

16y ago

What else can I help you with?

Related Questions

What is the difference between the logistic regression and regular regression?

in general regression model the dependent variable is continuous and independent variable is discrete type. in genral regression model the variables are linearly related. in logistic regression model the response varaible must be categorical type. the relation ship between the response and explonatory variables is non-linear.


What Is a Logistic Regression Algorithm?

Using real-world data from a data set, a statistical analysis method known as logistic regression predicts a binary outcome, such as yes or no. A logistic regression model forecasts a dependent data variable by examining the correlation between one or more existing independent variables. Please visit for more information 1stepgrow.


What is the difference between ratio estimation and regression estimation?

diferece between ratio and regression


What is the difference between the population and sample regression functions Is this a distinction without difference?

What is the difference between the population and sample regression functions? Is this a distinction without difference?


What is binary logistic regression?

Binary logistic regression is a logistic regression that applies to binary (0,1) variables (e.g. live or die, fail or pass...). Binary logistic regression is used to predict and model 0,1 problems in medicine, BI and many more fields. The reason logistic regression is preferred by many researchers is that it allows one to see the effect every variable has on the model in contrast to black boxed models such as neural networks.


What is the difference between simple and multiple linear regression?

I want to develop a regression model for predicting YardsAllowed as a function of Takeaways, and I need to explain the statistical signifance of the model.


What is the difference betwene simple linear regression and multiple regression?

Simple linear regression is performed between one independent variable and one dependent variable. Multiple regression is performed between more than one independent variable and one dependent variable. Multiple regression returns results for the combined influence of all IVs on the DV as well as the individual influence of each IV while controlling for the other IVs. It is therefore a far more accurate test than running separate simple regressions for each IV. Multiple regression should not be confused with multivariate regression, which is a much more complex procedure involving more than one DV.


What is the major difference between regression testing and retesting?

regression testing is a white box testng


Is the difference between exponential growth and logistic growth?

look in your textbook


What is difference between procurement and logistic?

Procurement is about buying. Logistics is about transporting.


What is the difference between classical regression analysis and spatial regression analysis?

how can regression model approach be useful in lean construction concept in the mass production of houses


What is the difference between Multicollinearity and Autocorrelation?

The difference between multicollinearity and auto correlation is that multicollinearity is a linear relationship between 2 or more explanatory variables in a multiple regression while while auto-correlation is a type of correlation between values of a process at different points in time, as a function of the two times or of the time difference.