answersLogoWhite

Top Answer
User Avatar
Wiki User
Answered 2010-04-15 21:18:49

In a right triangle, the right angle is formed by sides a and b. Side c is the hypotenuse.

Theta is the interior angle that joins (let's say) sides b and c. The sin of theta is the length of a over the length of c. The cos of theta is the length of b over the length of c. The tan of theta is the length of a over the length of b.

Sin theta= opposite divided by hypotenuse. Cos theta=adjacent divided by hypotenuse. Tan theta=opposite over adjacent.

(Sin1-Cos1)-Tan1=-1.25623905

Sorry, that was a mathematician's joke.

001
🙏
0
🤨
0
😮
0
😂
0
User Avatar

Your Answer

Still Have Questions?

Related Questions

What are the sum and difference identities for the sine cosine and tangent functions?

Sine sum identity: sin (x + y) = (sin x)(cos y) + (cos x)(sin y)Sine difference identity: sin (x - y) = (sin x)(cos y) - (cos x)(sin y)Cosine sum identity: cos (x + y) = (cos x)(cos y) - (sin x)(sin y)Cosine difference identity: cos (x - y) = (cos x)(cos y) + (sin x)(sin y)Tangent sum identity: tan (x + y) = [(tan x) + (tan y)]/[1 - (tan x)(tan y)]Tangent difference identity: tan (x - y) = [(tan x) - (tan y)]/[1 + (tan x)(tan y)]


How do you verify the identity of cos θ tan θ equals sin θ?

To show that (cos tan = sin) ??? Remember that tan = (sin/cos) When you substitute it for tan, cos tan = cos (sin/cos) = sin QED


How do you simplify cos theta times csc theta divided by tan theta?

'csc' = 1/sin'tan' = sin/cosSo it must follow that(cos) (csc) / (tan) = (cos) (1/sin)/(sin/cos) = (cos) (1/sin) (cos/sin) = (cos/sin)2


How do you simplify tan theta cos theta?

Remember that tan = sin/cos. So your expression is sin/cos times cos. That's sin(theta).


Sin x Tan x equals Sin x?

No. Tan(x)=Sin(x)/Cos(x) Sin(x)Tan(x)=Sin2(x)/Cos(x) Cos(x)Tan(x)=Sin(x)


How tan9-tan27-tan63 tan81 equals 4?

tan(9) + tan(81) = sin(9)/cos(9) + sin(81)/cos(81)= {sin(9)*cos(81) + sin(81)*cos(9)} / {cos(9)*cos(81)} = 1/2*{sin(-72) + sin(90)} + 1/2*{sin(72) + sin(90)} / 1/2*{cos(-72) + cos(90)} = 1/2*{sin(-72) + 1 + sin(72) + 1} / 1/2*{cos(-72) + 0} = 2/cos(72) since sin(-72) = -sin(72), and cos(-72) = cos(72) . . . . . (A) Also tan(27) + tan(63) = sin(27)/cos(27) + sin(63)/cos(63) = {sin(27)*cos(63) + sin(63)*cos(27)} / {cos(27)*cos(63)} = 1/2*{sin(-36) + sin(90)} + 1/2*{sin(72) + sin(36)} / 1/2*{cos(-36) + cos(90)} = 1/2*{sin(-36) + 1 + sin(36) + 1} / 1/2*{cos(-36) + 0} = 2/cos(36) since sin(-36) = -sin(36), and cos(-36) = cos(36) . . . . . (B) Therefore, by (A) and (B), tan(9) - tan(27) - tan(63) + tan(81) = tan(9) + tan(81) - tan(27) - tan(63) = 2/cos(72) – 2/cos(36) = 2*{cos(36) – cos(72)} / {cos(72)*cos(36)} = 2*2*sin(54)*sin(18)/{cos(72)*cos(36)} . . . . . . . (C) But cos(72) = sin(90-72) = sin(18) so that sin(18)/cos(72) = 1 and cos(36) = sin(90-36) = sin(54) so that sin(54)/cos(36) = 1 and therefore from C, tan(9) – tan(27) – tan(63) + tan(81) = 2*2*1*1 = 4


How do you prove sin x tan x equals cos x?

You can't. tan x = sin x/cos x So sin x tan x = sin x (sin x/cos x) = sin^2 x/cos x.


What is cos x tan x simplified?

A useful property in Trigonometry is: tan(x) = sin(x) / cos(x) So, cos(x) tan(x) = cos(x) [ sin(x) / cos (x)] = sin(x)


What is cos x tan x simlpified?

The definition of tan(x) = sin(x)/cos(x). By this property, cos(x)tan(x) = sin(x).


Verify the identity sinx cotx - cosx divided by tanx equals 0?

(sin(x)cot(x) - cos(x))/tan(x)(Multiply by tan(x)/tan(x))sin(x) - cos(x)tan(x)(tan(x) = sin(x)/cos(x))sinx - cos(x)(sin(x)/cos(x))(cos(x) cancels out)sin(x) - sin(x)0


What is the value of sin A plus cos Acos A (1-cos A) when tan A 815?

When tan A = 815, sin A = 0.9999992 and cos A = 0.0012270 so that sin A + cos A*cos A*(1-cos A) = 1.00000075, approx.


How do you solve the following identity sec x - cos x equals sin x tan x?

sec x - cos x = (sin x)(tan x) 1/cos x - cos x = Cofunction Identity, sec x = 1/cos x. (1-cos^2 x)/cos x = Subtract the fractions. (sin^2 x)/cos x = Pythagorean Identity, 1-cos^2 x = sin^2 x. sin x (sin x)/(cos x) = Factor out sin x. (sin x)(tan x) = (sin x)(tan x) Cofunction Identity, (sin x)/(cos x) = tan x.


How do you prove tan x plus tan x sec 2x equals tan 2x?

tan x + (tan x)(sec 2x) = tan 2x work dependently on the left sidetan x + (tan x)(sec 2x); factor out tan x= tan x(1 + sec 2x); sec 2x = 1/cos 2x= tan x(1 + 1/cos 2x); LCD = cos 2x= tan x[cos 2x + 1)/cos 2x]; tan x = sin x/cos x and cos 2x = 1 - 2 sin2 x= (sin x/cos x)[(1 - 2sin2 x + 1)/cos 2x]= (sin x/cos x)[2(1 - sin2 x)/cos 2x]; 1 - sin2 x = cos2 x= (sin x/cos x)[2cos2 x)/cos 2x]; simplify cos x= (2sin x cos x)/cos 2x; 2 sinx cos x = sin 2x= sin 2x/cos 2x= tan 2x


How do you express sin x plus cos x divided by cos x in terms of tan x?

(sin x + cos x) / cosx = sin x / cos x + cosx / cos x = tan x + 1


What are the double-angle and half-angle identities?

sin 2θ = 2(sin θ)(cos θ) cos 2θ = (cos θ)2 - (sin θ)2 cos 2θ = 2(cos θ)2 - 1 cos 2θ = 1 - 2(sin θ)2 tan 2θ = 2(tan θ)/[1 - (tan θ)2] sin θ/2 = ±√[(1 - (cos θ))/2] cos θ/2 = ±√[(1 + (cos θ))/2] tan θ/2 = ±√[(1 - (cos θ))/(1 + (cos θ))] ; cos θ ≠ -1 tan θ/2 = [1 - (cos θ)]/(sin θ) tan θ/2 = (sin θ)/[1 + (cos θ)]


Sec x times sin x divided by tan x?

1 (sec x)(sin x /tan x = (1/cos x)(sin x)/tan x = (sin x/cos x)/tan x) = tan x/tan x = 1


Solution for tan x plus cot x divided by sec x csc x?

(tan x + cot x)/sec x . csc x The key to solve this question is to turn tan x, cot x, sec x, csc x into the simpler form. Remember that tan x = sin x / cos x, cot x = 1/tan x, sec x = 1/cos x, csc x = 1/sin x The solution is: [(sin x / cos x)+(cos x / sin x)] / (1/cos x . 1/sin x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (1/sin x cos x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (sin x . cos x) then sin x. sin x + cos x . cos x sin2x+cos2x =1 The answer is 1.


What is the solution to cos tan-sin over cot equals 0?

either cos OR tan-sin equals zero socos=0 at pi/2 and 3pi/2ortan=sin which is impossibleim not sure though


What is the relation between polarizing angle and critical angle?

tan p=1/sin c sin p/cos p=1/sin c sin p.sin c=cos p


Find the value of a if tan 3a is equal to sin cos 45 plus sin 30?

If tan 3a is equal to sin cos 45 plus sin 30, then the value of a = 0.4.


What does cos divided by sin equal?

tan


What is dydx of sincostanx?

If y = sin(cos(tan(x))) Using the chain rule: (f(g(x)))' = f'(g(x)).g'(x) Then dy/dx = cos(cos(tan(x))).-sin(tan(x)).sec2(x) = -cos(cos(tan(x))).sin(tan(x)).sec2(x) Unfortunately I don't think this can be simplified much more. ( sec = 1/cos )


Limit when x goes to 0 tanx divided by x?

tan x = sin x / cos x, so:lim (tan x / x) = lim (sin x / x cos x). Since it is known that the limit of sin x / x = 1, you have lim 1 / cos x = 1 (since cos 0 = 1).tan x = sin x / cos x, so:lim (tan x / x) = lim (sin x / x cos x). Since it is known that the limit of sin x / x = 1, you have lim 1 / cos x = 1 (since cos 0 = 1).tan x = sin x / cos x, so:lim (tan x / x) = lim (sin x / x cos x). Since it is known that the limit of sin x / x = 1, you have lim 1 / cos x = 1 (since cos 0 = 1).tan x = sin x / cos x, so:lim (tan x / x) = lim (sin x / x cos x). Since it is known that the limit of sin x / x = 1, you have lim 1 / cos x = 1 (since cos 0 = 1).


What is the relationship between the acute angles of a right triangle?

There are many. For example, if A and B are the two acute angles, then A + B = 90 degrees or sin(A) = cos(B) or cos(A) = sin(B) or tan(A) = 1/tan(B)


What is the solution to sec plus tan equals cos over 1 plus sin?

sec + tan = cos /(1 + sin) sec and tan are defined so cos is non-zero. 1/cos + sin/cos = cos/(1 + sin) (1 + sin)/cos = cos/(1 + sin) cross-multiplying, (1 + sin)2 = cos2 (1 + sin)2 = 1 - sin2 1 + 2sin + sin2 = 1 - sin2 2sin2 + 2sin = 0 sin2 + sin = 0 sin(sin + 1) = 0 so sin = 0 or sin = -1 But sin = -1 implies that cos = 0 and cos is non-zero. Therefore sin = 0 or the solutions are k*pi radians where k is an integer.


Still have questions?