Want this question answered?

Q: What is the mass of a bar of gold that measures Cm x Cm x Cm and has density of Cm?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

The volume of the gold bar is not affected by such a physical deformation and remains at 525 cm3 and so the density is unchanged.

OK, we have you surrounded now! Where is the third gold bar?

From here, I can't quite make out the blocks of gold that you're looking at.But the density of gold is about 19.3 gm/cm3 , whether it happens to be a flake,a nugget, a coin, a bar, or an ingot. With density, size does not matter.

Density or weight is calculated by mass/volume

Bar lines divide the staff into measures

Related questions

The density of the shiny, gold-colored bar of metal is 12.19 grams over cubic centimeters. The density of a Gold(Au) is 19.3 grams over cubic centimeters. These means that the gold-colored bar of metal is not pure gold.

To calculate the volume of the gold bar, we first need the density of gold. The density of gold is approximately 19,320 kg/m^3. Using this value, we can calculate the volume of the gold bar by dividing the mass of the bar (25 kg) by the density of gold. This would give us the volume of the gold bar in cubic meters.

The density of each piece remains the same as the density of the original gold bar. Density is a characteristic property of a material and does not change with size or shape. Thus, each new piece will have the same density as the original gold bar.

Exactly the same.

The density of a pure gold ring would be slightly lower than a bar of pure gold because pure gold rings often contain other metals like copper or silver in their alloy. The addition of these metals decreases the overall density of the ring compared to pure gold.

You could compare the measured density of the bar of metal to the known density of pure gold (19.32 g/cm³). If the measured density matches the density of pure gold, there is a high likelihood that the bar is made of pure gold. If the measured density is significantly different, then the bar is likely not pure gold.

The number of atoms in a bar of gold depends on the mass of the bar. To calculate the number of atoms, you would need to know the mass of the bar and the atomic mass of gold. You can use Avogadro's number to convert from grams to atoms.

If you use the definition of "density" as mass/volume, then yes. That's the standard definition.However, it is also possible to define density as weight/volume.

As the volume of a chocolate bar increases, its density decreases. This is because density is calculated by dividing mass by volume, so with a larger volume and the same mass, the density will be lower. Conversely, as the volume decreases, the density will increase.

Intensive properties depend only on the type of matter you're dealing with. For example, density: a single atom of gold will have the same density as a huge bar of gold, it doesn't matter how much of it there is. Extensive properties do depend on how much of the substance you have. A cubic centimeter of gold has more volume and mass than an atom of gold, so they are both extensive properties.

It depends on the density of the material of which the bar is made.

Stays the same. Cutting a chocolate bar in half does not change its density, as density is a measure of mass per unit volume and is independent of the size or shape of the object. The mass and volume of the chocolate bar remain the same, so the density remains constant.