Pr(3 flips at least one H) = 1 - Pr(3 flips, NO heads)
= 1 - Pr(3 flips, TTT) = 1 - (1/2)3 = 1 - 1/8 = 7/8
If it is a fair coin, the probability of getting at least one Head from 3 flips is 7/8If it is a fair coin, the probability of getting at least one Head from 3 flips is 7/8If it is a fair coin, the probability of getting at least one Head from 3 flips is 7/8If it is a fair coin, the probability of getting at least one Head from 3 flips is 7/8
50%
The probability is 1/2 if the coin is flipped only twice. As the number of flips increases, the probability approaches 1.
The probability of obtaining exactly two heads in three flips of a coin is 0.5x0.5x0.5 (for the probabilities) x3 (for the number of ways it could happen). This is 0.375. However, we are told that at least one is a head, so the probability that we got 3 tails was impossible. This probability is 0.53 or 0.125. To deduct this we need to divide the probability we have by 1-0.125 0.375/(1-0.125) = approximately 0.4286
>>> 1:7 (or, if you like probability, 87.5%)I disagree. There are four possible combinations of three tosses (where order does not matter):HHHHHTHTTTTTThree of these combinations will show at least one head - only by throwing three tails will you not throw at least one head.Thus, the probability of throwing at least one head in three flips is 75%.
The probability of obtaining 7 heads in eight flips of a coin is:P(7H) = 8(1/2)8 = 0.03125 = 3.1%
We can simplify the question by putting it this way: what is the probability that exactly one out of two coin flips is a head? Our options are HH, HT, TH, TT. Two of these four have exactly one head. So 2/4=.5 is the answer.
the probability of getting one head and one tail on three flips of a coin is 1/9
Assuming the coin is fair, the probability of that sequence is 1/16. The probability of three H and one T, in any order, is 1/4.
With two flips of a coin you can get two heads, two tails, a head and a tail, or a tail and a head. There are a total of four different possible outcomes, and three of them have at least one head. That's 3 out of 4, or 3/4ths. It's also 0.75 which is the probability of getting at least one head with two flips of a coin. Note that as we use the term probability here, it is zero (no chance it can happen at all), or one (it must happen), or something in between. A probability appears in the form of a fraction or decimal, and has no units attached to it.
The requirement that one coin is a head is superfluous and does not matter. The simplified question is "what is the probability of obtaining exactly six heads in seven flips of a coin?"... There are 128 permutations (27) of seven coins, or seven flips of one coin. Of these, there are seven permutations where there are exactly six heads, i.e. where there is only one tail. The probability, then, of tossing six heads in seven coin tosses is 7 in 128, or 0.0546875.
It is 0.3125