answersLogoWhite

0


Best Answer

Pr(3 flips at least one H) = 1 - Pr(3 flips, NO heads)

= 1 - Pr(3 flips, TTT) = 1 - (1/2)3 = 1 - 1/8 = 7/8

User Avatar

Wiki User

โˆ™ 2010-05-14 19:13:25
This answer is:
User Avatar
Study guides

Algebra

20 cards

A polynomial of degree zero is a constant term

The grouping method of factoring can still be used when only some of the terms share a common factor A True B False

The sum or difference of p and q is the of the x-term in the trinomial

A number a power of a variable or a product of the two is a monomial while a polynomial is the of monomials

โžก๏ธ
See all cards
3.74
โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…
1018 Reviews

Add your answer:

Earn +20 pts
Q: What is the probability that three coin flips will have at least one head?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the probability of flipping a head when you roll a coin 3 times?

If it is a fair coin, the probability of getting at least one Head from 3 flips is 7/8If it is a fair coin, the probability of getting at least one Head from 3 flips is 7/8If it is a fair coin, the probability of getting at least one Head from 3 flips is 7/8If it is a fair coin, the probability of getting at least one Head from 3 flips is 7/8


What is the probability that in four coin flips you get at least 2 heads?

50%


What is the probability of two consecutive different coin flips?

The probability is 1/2 if the coin is flipped only twice. As the number of flips increases, the probability approaches 1.


What is the probability of obtaining exactly two heads in three flips of a coin given that at least one is a head?

The probability of obtaining exactly two heads in three flips of a coin is 0.5x0.5x0.5 (for the probabilities) x3 (for the number of ways it could happen). This is 0.375. However, we are told that at least one is a head, so the probability that we got 3 tails was impossible. This probability is 0.53 or 0.125. To deduct this we need to divide the probability we have by 1-0.125 0.375/(1-0.125) = approximately 0.4286


What are the odds in favor of getting at least one head in 3 consecutive flips of a coin?

>>> 1:7 (or, if you like probability, 87.5%)I disagree. There are four possible combinations of three tosses (where order does not matter):HHHHHTHTTTTTThree of these combinations will show at least one head - only by throwing three tails will you not throw at least one head.Thus, the probability of throwing at least one head in three flips is 75%.


What is the probability of obtaining exactly seven heads in eight flips of a coin given that at least one is a head?

The probability of obtaining 7 heads in eight flips of a coin is:P(7H) = 8(1/2)8 = 0.03125 = 3.1%


What is the probability of obtaining exactly four heads in five flips of a coin given that at least three are heads?

We can simplify the question by putting it this way: what is the probability that exactly one out of two coin flips is a head? Our options are HH, HT, TH, TT. Two of these four have exactly one head. So 2/4=.5 is the answer.


What is the probability of getting two head and one tail if a coin is tossed 3 times?

the probability of getting one head and one tail on three flips of a coin is 1/9


What is the PH H H T on four flips of a coin?

Assuming the coin is fair, the probability of that sequence is 1/16. The probability of three H and one T, in any order, is 1/4.


You flipped a coin two times. What is the probability of getting at least one head?

With two flips of a coin you can get two heads, two tails, a head and a tail, or a tail and a head. There are a total of four different possible outcomes, and three of them have at least one head. That's 3 out of 4, or 3/4ths. It's also 0.75 which is the probability of getting at least one head with two flips of a coin. Note that as we use the term probability here, it is zero (no chance it can happen at all), or one (it must happen), or something in between. A probability appears in the form of a fraction or decimal, and has no units attached to it.


What is the probability of obtaining exactly six heads in seven flips of a coin given that at least one is a head?

The requirement that one coin is a head is superfluous and does not matter. The simplified question is "what is the probability of obtaining exactly six heads in seven flips of a coin?"... There are 128 permutations (27) of seven coins, or seven flips of one coin. Of these, there are seven permutations where there are exactly six heads, i.e. where there is only one tail. The probability, then, of tossing six heads in seven coin tosses is 7 in 128, or 0.0546875.


What is the probability of 3 heads and 2 tails on five flips of a coin?

It is 0.3125

People also asked