- (with L. Banyai, D.B. Tran Thoai, and H. Haug)
Interband
quantum kinetics with LO-phonon scattering in a laser pulse excited
semiconductor,
*Phys. stat. sol. (b)***173**(1992), 149 - 157. - Spektraltheorie gewöhnlicher Differentialoperatoren mit Hilfe der m-Funktion (German), Ph.D. thesis, Osnabrück, 1996.
- Geometric characterization of singular
self-adjoint
boundary conditions for Hamiltonian systems,
*Appl. Anal.***60**(1996), 49 - 61. - Essential spectrum and L
_{2}-solutions of one-dimensional Schrödinger operators,*Proc. Amer. Math. Soc.***124**(1996), 2097 - 2100. - Relationships between the m-function and
subordinate
solutions of second order differential operators,
*J. Math. Anal. Appl.***206**(1997), 352 - 363. - A probabilistic approach to
one-dimensional Schrödinger
operators with sparse potentials,
*Comm. Math. Phys.***185**(1997), 313 - 323. - (with H. Behncke) Asymptotic integration
of linear differential
equations,
*J. Math. Anal. Appl.***210**(1997), 585 - 597. - Some Schrödinger operators with
power-decaying potentials
and pure point spectrum,
*Comm. Math. Phys.***186**(1997), 481 - 493. - (with M. Christ and A. Kiselev) The absolutely
continuous spectrum of one-dimensional Schrödinger
operators with decaying potentials,
*Math. Research Letters***4**(1997), 719 - 723. - Some Schrödinger operators with power-decaying
potentials and pure point spectrum, II. The discrete case,
*Helv. Phys. Acta***71**(1998), 200 - 213. - The absolutely continuous spectrum of one-dimensional
Schrödinger operators with decaying potentials,
*Comm. Math. Phys.***193**(1998), 151 - 170. - Spectral analysis of higher order
differential operators, I.
General properties of the M-function,
*J. London Math. Soc.***58**(1998), 367 - 380. - (with A. Kiselev and B. Simon) Effective
perturbation methods for one-dimensional Schrödinger operators,
*J. Differential Eq.***151**(1999), 290 - 312. - Embedded singular continuous spectrum
for one-dimensional Schrödinger operators,
*Trans. Amer. Math. Soc.***351**(1999), 2479 - 2497. - One-dimensional Schrödinger operators with decaying potentials, in Operator Theory: Advances and Applications, vol. 108: Mathematical Results in Quantum Mechanics (Birkhäuser 1999), pg. 343 - 349.
- Spectral analysis of higher order
differential operators, II.
Fourth order equations,
*J. London Math. Soc.***59**(1999), 188 - 206. - Bounds on embedded singular spectrum for one-dimensional
Schrödinger operators,
*Proc. Amer. Math. Soc.***128**(2000), 161 - 171. - (with S. Hassi and H. de Snoo)
Subordinate solutions and spectral measures of
canonical systems,
*Int. Eq. Op. Theory***37**(2000), 48 - 63. - Schrödinger operators with decaying potentials: some
counterexamples,
*Duke Math. J.***105**(2000), 463 - 496. - (with H. Behncke) Uniform asymptotic integration of a
family of linear differential systems,
*Math. Nachr.***225**(2001), 5 - 17. - (with H. Behncke and D. Hinton) The spectrum of
differential operators of order 2n with almost constant
coefficients,
*J. Differential Eq.***175**(2001), 130 - 162. - (with T. Kriecherbauer) Finite gap potentials and WKB asymptotics
for one-dimensional Schrödinger operators,
*Comm. Math. Phys.***223**(2001), 409 - 435. - (with D. Krutikov) Schrödinger operators with sparse
potentials: asymptotics of the Fourier transform of the spectral
measure,
*Comm. Math. Phys.***223**(2001), 509 - 532. - (with R. Killip) Reducing subspaces,
*J. Funct. Anal.***187**(2001), 396 - 405. - Schrödinger operators and de Branges spaces,
*J. Funct. Anal.***196**(2002), 323 - 394. - Inverse spectral theory for
one-dimensional Schrödinger
operators: the A function,
*Math. Z.***245**(2003), 597 - 617. - Universal bounds on spectral measures
of one-dimensional Schrödinger
operators,
*J. Reine Angew. Math.***564**(2003), 105 - 117. - (with A. Ben Amor) Direct and inverse spectral theory of one-dimensional Schrödinger
operators with measures,
*Int. Eq. Op. Theory***52**(2005), 395 - 417. - (with D. Damanik) Schrödinger operators with many bound states,
*Duke Math. J.***136**(2007), 51 - 80. - Discrete and embedded eigenvalues for
one-dimensional Schrödinger operators,
*Comm. Math. Phys.***271**(2007), 275 - 287. - Finite propagation speed and kernel estimates for
Schrödinger operators,
*Proc. Amer. Math. Soc.***135**(2007), 3329 - 3340. - The absolutely continuous spectrum
of one-dimensional Schrödinger operators,
*Math. Phys. Anal. Geom.***10**(2007), 359 - 373. - (with A. Fischer) The absolutely continuous spectrum
of discrete canonical systems,
*Trans. Amer. Math. Soc.***361**(2009), 793 - 818. - (with A. Poltoratski) Reflectionless Herglotz functions and Jacobi matrices,
*Comm. Math. Phys.***288**(2009), 1007 - 1021. - Uniqueness of reflectionless Jacobi matrices and the Denisov-Rakhmanov Theorem,
*Proc. Amer. Math. Soc.***139**(2011), 2175 - 2182. - The absolutely continuous spectrum of Jacobi matrices,
*Annals of Math.***174**(2011), 125 - 171. - (with A. Poltoratski) Approximation results for reflectionless Jacobi matrices,
*Int. Math. Res. Not.***16**(2011), 3575 - 3617. - (with I. Hur) Ergodic Jacobi matrices and conformal maps,
*Math. Phys. Anal. Geom.***15**(2012), 121 - 162. - Topological properties of reflectionless Jacobi matrices,
*J. Approx. Theory***168**(2013), 1 - 17. - Schrödinger operators and canonical systems, in Operator Theory (ed. Daniel Alpay), Springer 2015, pg. 623 - 630.
- (with I. Hur and M. McBride) The Marchenko representation of reflectionless Jacobi and
Schrödinger operators,
*Trans. Amer. Math. Soc.***368**(2016), 1251 - 1270. - Generalized reflection coefficients,
*Comm. Math. Phys.***337**(2015), 1011 - 1026. - (with S. Grudsky and A. Rybkin) The inverse scattering transform for the KdV equation with step-like singular Miura initial profiles,
*J. Math. Phys.***56**(2015), 14 pp. - Spectral theory of canonical systems, de Gruyter Studies in Mathematics 70, de Gruyter, 2018.
- (with D. Ong) Generalized Toda flows,
*Trans. Amer. Math. Soc.***371**(2019), 5069 - 5081. - Toda maps, cocycles, and canonical systems,
*J. Spectral Theory***9**(2019), 1327 - 1365. - (with K. Scarbrough) The essential spectrum of canonical systems,
*J. Approx. Theory***254**(2020). - (with K. Scarbrough) Oscillation theory and semibounded canonical systems,
*J. Spectral Theory***10**(2020), 1333 - 1359.

The more recent papers (starting with 21) can be downloaded. Please go to preprints.