answersLogoWhite

0


Best Answer

The discriminant must be a perfect square or a square of a rational number.

User Avatar

Wiki User

8y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is true of the discriminant when the two real number solutions to a quadratic equation are rational numbers?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

When the discriminant is perfect square the answer to a quadratic equation will be?

Rational.


How can you determine whether a polynomial equation has imaginary solutions?

To determine whether a polynomial equation has imaginary solutions, you must first identify what type of equation it is. If it is a quadratic equation, you can use the quadratic formula to solve for the solutions. If the equation is a cubic or higher order polynomial, you can use the Rational Root Theorem to determine if there are any imaginary solutions. The Rational Root Theorem states that if a polynomial equation has rational solutions, they must be a factor of the constant term divided by a factor of the leading coefficient. If there are no rational solutions, then the equation has imaginary solutions. To use the Rational Root Theorem, first list out all the possible rational solutions. Then, plug each possible rational solution into the equation and see if it is a solution. If there are any solutions, then the equation has imaginary solutions. If not, then there are no imaginary solutions.


What is the solution of rational equations reducible to quadratic equation?

A quadratic equation ax2 + bx + c = 0 has the solutions x = [-b +/- sqrt(b2 - 4*a*c)]/(2*a)


What is the solution of rational equations reducible to quadratic?

They are the solutions for the reduced quadratic.


Does there exist a quadratic equation whose coefficients are irrational but both the roots are rational?

None, if the coefficients of the quadratic are in their lowest form.

Related questions

When the discriminant is perfect square the answer to a quadratic equation will be?

Rational.


If the discriminant of an equation is negative?

It has two complex solutions.


How do you know if a quadratic equation can be factored?

The answer depends on what the factors will be. For example, every quadratic can be factored if you allow complex numbers. If not, then it helps to use the discriminant. If it is positive, there are two real factors or solutions. If that positive number is a perfect square, then the factors are rational numbers. If not, they are real but not rational (irrational). If the discriminant is 0, there is one real solution. Lastly, if it is negative, there are no real solutions.


How can you determine whether a polynomial equation has imaginary solutions?

To determine whether a polynomial equation has imaginary solutions, you must first identify what type of equation it is. If it is a quadratic equation, you can use the quadratic formula to solve for the solutions. If the equation is a cubic or higher order polynomial, you can use the Rational Root Theorem to determine if there are any imaginary solutions. The Rational Root Theorem states that if a polynomial equation has rational solutions, they must be a factor of the constant term divided by a factor of the leading coefficient. If there are no rational solutions, then the equation has imaginary solutions. To use the Rational Root Theorem, first list out all the possible rational solutions. Then, plug each possible rational solution into the equation and see if it is a solution. If there are any solutions, then the equation has imaginary solutions. If not, then there are no imaginary solutions.


What statement must be true of an equation before you can use the quadratic formula to find the solutions?

The quadratic formula can be used to find the solutions of a quadratic equation - not a linear or cubic, or non-polynomial equation. The quadratic formula will always provide the solutions to a quadratic equation - whether the solutions are rational, real or complex numbers.


When the discriminant is a perfect square are the solutions rational or irrational?

The "discriminant" here refers to the part of the quadratic equation under the radical (square root) sign. When it is a perfect square, the square root is also a perfect square, so the radical goes away, leaving only rational numbers. So, when the discriminant is a perfect square, the solutions are (usually) rational. Unless, of course, some other part of the result is irrational. For example, if the coefficient of the x2 term ("a" in the quadratic formula) is pi, and the constant term is 1/pi, the discriminant will turn out to be 4 (4ac = 4 * pi * 1/pi = 4), which is a perfect square, but solutions will be irrational anyway because the denominator becomes 2pi, and pi is irrational.


What is the solution of rational equations reducible to quadratic equation?

A quadratic equation ax2 + bx + c = 0 has the solutions x = [-b +/- sqrt(b2 - 4*a*c)]/(2*a)


What is the solution of rational equations reducible to quadratic?

They are the solutions for the reduced quadratic.


What is the discriminant?

If a quadratic equation is ax2+bx+cthen we can learn something about the roots withoutcompletely solving the quadratic formula.The discriminant is b2-4ac. You may recognize this as part of the quadratic formula.If the value is a non-zero perfect square, there are 2 rational rootsIf the value is an imperfect square, there are 2 irrational rootsIf the value is zero, there is 1 rational root (parabola vertex is on the x-axis)If the value is negative, there are imaginary roots (no intersection with x-axis)The discriminant, therefore, tells us the nature of the roots.


X2-14x plus 46 equals 0?

This is the generalized trinomial equation (aka quadratic):y = ax2 - bx - cBefore factoring, always check the discriminant of the quadratic equation, which is:b2 - 4acIf it is a rational square (16, 25, 196, 225), then it is factorable. If it is not, then it is not factorable.In this case, it is not, since the discriminant is equal to 2√3.Now, you will have to use the quadratic formula:(-b2 +/- √(b2 - 4ac))/2This will give you (14 +/- 2√3)/2


What is the discriminant in a math equation?

In a quadratic equation of the form ax2+bx + c = 0, the discriminant is b2-4ac. It determines the nature of the roots of the equation. If it is positive, there are two real roots; if is negative, there are two complex roots; if it is zero, there is one real root, often called a double root. Both real roots are rational if and only the discriminant is a perfect square.


Does there exist a quadratic equation whose coefficients are irrational but both the roots are rational?

None, if the coefficients of the quadratic are in their lowest form.