answersLogoWhite

0

The speed is (frequency) x (wavelength) = 318.75 meters per second.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Physics
Related Questions

What can be determine from the frequency and wavelength of a wave?

The velocity of the wave


A sound wave traveling at a speed of 340.0 meters per second has a wavelength of 1.25 what is the frequency?

Answer: frequency = 272 Hz. Given the wave velocity (speed of sound) and wavelength, find the frequency of the wave. Velocity = 340.0 m/s, Wavelength = 1.25 m. Formulas: Velocity = wavelength * frequency. Frequency = velocity / wavelength. Calculation: Frequency = (340.0 m/s) / (1.25 m) = 272 Hz. (Where Hertz = cycles / second.)


What are the characteristics of sound waves?

The characteristics of a sound wave is the Amplitude, Frequency, Wavelength, time period, and velocity. The sound wave itself is a longitudinal wave that shows the rarefactions and compressions of a sound wave.


How is wave and velocity related?

Wave velocity is directly proportional to the frequency and wavelength of the wave. In general, wave velocity = frequency x wavelength. This means that as the frequency or wavelength of a wave increases, the velocity of the wave also increases.


What is the frequency of a sound wave having a velocity of 341 meters and wavelength of 0.8 meters?

The frequency of a sound wave can be calculated using the formula: frequency = velocity / wavelength. Plugging in the values given, we get frequency = 341 m/s / 0.8 m = 426.25 Hz. Therefore, the frequency of the sound wave is 426.25 Hertz.


How do wavelength and periods relate?

Wavelength*Frequency = Velocity of the wave. or Wavelength/Period = Velocity of the wave.


What is the relationship between the velocity frequency and wavelength of a wave?

The velocity of a wave is the product of its frequency and wavelength. This relationship is described by the formula: velocity = frequency x wavelength. This means that as the frequency of a wave increases, its wavelength decreases, and vice versa.


What is the relationship between velocity and frequency?

Velocity and frequency are related in wave physics. The speed of a wave is determined by the product of its frequency and wavelength. As frequency increases, velocity also increases if the wavelength remains constant. This relationship is described by the equation: velocity = frequency x wavelength.


What is the relationship between wavelength frequency and velocity of sound in air?

The wavelength of a sound wave is inversely proportional to its frequency, meaning higher frequency sound waves have shorter wavelengths. The speed of sound in air is constant at around 343 meters per second, regardless of the frequency of the sound wave. This means that as the frequency of a sound wave increases, its wavelength decreases, but the speed of sound in air remains the same.


What is the wavelength of a sound with a frequency of 21 Hz?

Simply using the formula wavelength = velocity of the wave / frequency we can get the required. So we need velocity of sound wave. Usually we take it to be 330 m/s at room temperature. Now using 330 and 21 we can get wavelength in metre


What is the equation shows how wavelength is related to velocity and frequency?

The equation that shows how wavelength is related to velocity and frequency is: wavelength = velocity / frequency. This equation is derived from the wave equation, which states that the speed of a wave is equal to its frequency multiplied by its wavelength.


What decreases as the frequency of a sound wave increases?

Wavelength.