answersLogoWhite

0


Best Answer

Colorblindness is a recessive, sex-linked trait, and the gene that causes it occurs on the X chromosome. For the mother to be colorblind, she must have two copies of the gene and be homozygous recessive. The father, on the other hand, can not have the gene, because he (as a male) only has one X chromosome. So, if we let Xc represent the recessive gene for colorblindness and Xn represent the normal gene, the the mother is XcXc and the father is XnY.

All of their children will receive the recessive gene from their mother. In the males, this means that they will be colorblind, because the chromosome they get from their father will by the Y chromosome. The daughters, however, will get the Xn gene, which is dominant and will override the gene for colorblindness. Thus, all of the couple's sons will be colorblind, and none of their daughters will be.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What would be the color vision of children if their mom is colorblind and their dad is normal?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the probability that a colorblind female and a normal color vision male will produce an colorblind offspring?

100% of all male offspring will be colorblind. 0% of all femal offspring will be colorblind.


A male who has normal vision marries a female who is a carrier for colorblindness can they have a colorblind daughter?

Assuming that the man who has normal vision is homozygous for normal vision, the couple's daughter will either be homozygous for normal vision or heterozygous (normal vision but carrier for color blindness) for normal vision. In light of this, the couple's daughter will not be color blind.


A women wo isn't colorblind but has an allele for color blindness reproduces with a man who has normal vision what is the chance that they'll have a colorblind daughter?

There is no chance for a colorblind daughter because the x-chromosome that comes from the male is normal and then it does not matter which x-chromosome comes from the female because colorblindness is a recessive gene, therefore there is no chance.


If Couples that have normal vision what is the probability of them having a color blind daughter and color blind son?

It depends on a number of different factors. If colorblind is common in either family but the mother/father were lucky enough not to get it, then its a recessive gene. but if its not common in either family then its a very low chance the child will be color blind. Although, if there are numerous people on both sides of the family the probability is very high. It all depends on a lot of different factors. How dominant is the gene? How many relatives are colorblind? If there are any, and they have children, are they colorblind? The easiest way to figure out if the child will be colorblind is to have the kid and test it for colorblind-ness.


If a normal woman whose father is color-blind marries a colorblind man what are their chances of having a colorblind son?

50%

Related questions

What is the probability that a colorblind female and a normal color vision male will produce an colorblind offspring?

100% of all male offspring will be colorblind. 0% of all femal offspring will be colorblind.


A male who has normal vision marries a female who is a carrier for colorblindness can they have a colorblind daughter?

Assuming that the man who has normal vision is homozygous for normal vision, the couple's daughter will either be homozygous for normal vision or heterozygous (normal vision but carrier for color blindness) for normal vision. In light of this, the couple's daughter will not be color blind.


If a color blind woman marries a man with normal vision the children will be?

there is a 50% chance that the child will be colorblind. If it is a boy, it will be colorblind, but if it is a girl, it will only be a carrier. Mother's chromosome is XrXr and Father's Chromosome is XRY, which means the children's genotypes will be XRXr if girl and XrY if a boy.


A mother that carries the colorblind alleles and a father with normal vision can have children that are only?

The mother has two defective X chromosomes for color. The father has a normal X (and Y). If they have children and they are girls, the girls will have one defective X and a normal X. That normal X from dad will be enough so she will see color. If a boy, he will have a defective X and a normal Y but will be color blind. Only in the case of one normal X and a defective X would a child have normal vision. The Y chromosome doesn't have any genes for color.


A women wo isn't colorblind but has an allele for color blindness reproduces with a man who has normal vision what is the chance that they'll have a colorblind daughter?

There is no chance for a colorblind daughter because the x-chromosome that comes from the male is normal and then it does not matter which x-chromosome comes from the female because colorblindness is a recessive gene, therefore there is no chance.


If a color blind male who has normal clotting blood marries a female who is a carrier of hemophilia and has normal color vision could they have a color blind child?

In short, hemophilia has nothing to do with colorblindness, but YES, they could have a colorblind child if she is a carrier for the colorblindness gene. Color blindness is an X-linked trait. That means it is carried in the X chromosome, which differentiates whether a baby will be a girl or a boy. Women have two X chromosomes (XX), and men have an XY combination. If a woman is a carrier for color blindness, only one of her chromosomes will be affected (we'll call it a little "x"), and for that reason she will not be colorblind. Men, on the other hand, only have one X chromosome, so any time they carry the colorblindness gene, they will be colorblind. A woman will carry the colorblindness gene if: a. Her father is colorblind b. Any of her offpsring are colorblind She may carry the colorblindness gene if: a. Male family members (brothers, uncles, etc.) are colorblind A child inherits one chromosome from each parent. He/She will get an X chromosome from his/her mother, and an X from her father (if a girl) or a Y from his father (if a boy). So, If a woman has normal vision (assuming she does not have a family history of colorblindness), XX, and a man is colorblind, xY, they have several different chances for different offspring: Xx (a normal girl who carries the colorblindness gene) XY (a normal boy) Xx (a normal girl who carries the colorblindness gene) XY (a normal boy) The short answer is that ALL CHILDREN WILL HAVE NORMAL VISION. However, all daughters will be CARRIERS, meaning they can pass colorblindness on to their children.


What is the probability that a woman who is a carrier of the colorblind gene and a color blind man will have a first son who will be color blind?

The probability is 0 (but the daughter will be a carrier of the color blind gene). This is because the gene dictating whether someone is color blind or not is linked to the X chromosome (and not the Y). The color blind gene is a recessive gene whilst the normal color vision gene is a dominant gene. Hence if a girl (XX) has one normal vision gene (from one parent) and one color blind gene (from the other parent), her normal vision gene will be dominant to the recessive color blind gene and hence she will have normal vision (but she will be a carrier of the color blind gene). If both her parents contribute the recessive color blind gene to her, then she will be color blind. For a woman (XX) to be color blind, she needs to be have both genes to be recessive (ie where there is no dominant normal color vision gene to dominate). For a man (XY), as long as the X gene contributed by his mother is a color blind gene, he will be color blind because he has no other X chromosome where a dominant normal color gene could reside. Hence, to answer the question, a man with normal color vision (XY, with a dominant normal color vision X gene since the gene can't be the recessive color blind gene otherwise he will be colorblind) and a colorblind woman (XX, both recessive color blind genes), will each contribute an X each the child. The man will contribute his only X chromosome which carries the normal color vision X gene and the woman can only contribute a recessive color blind gene. The man's normal color vision X gene will be dominant, and hence the daughter will definitely have normal vision (despite being a carrier).


If Couples that have normal vision what is the probability of them having a color blind daughter and color blind son?

It depends on a number of different factors. If colorblind is common in either family but the mother/father were lucky enough not to get it, then its a recessive gene. but if its not common in either family then its a very low chance the child will be color blind. Although, if there are numerous people on both sides of the family the probability is very high. It all depends on a lot of different factors. How dominant is the gene? How many relatives are colorblind? If there are any, and they have children, are they colorblind? The easiest way to figure out if the child will be colorblind is to have the kid and test it for colorblind-ness.


If a normal woman whose father is color-blind marries a colorblind man what are their chances of having a colorblind son?

50%


A mother has one allele for color blindness and one allele for nomal vision what is the probability that her gamete will have the allele for color blindness?

Color Blindness is x-linked recessive. Therefore, it could not be heterozygous; the daughter would not be colorblind, but rather have normal vision.


A womens father is colorblind She marries a colorblind man Will there son or daughter be colorblind?

Colorblindness is an X-linked recessive disorder. This means girls (who have the sex chromosomes XX) must have a colorblind X from dad and a colorblind X from mom. Boys only need to have one colorblind X to be colorblind because they have sex chromosomes XY (and have only 1 X). If the dad has it, he has the colorblind X. If the daughter has it, she must have gotten her mom's colorblind X. If the mom is colorblind, then every child they have will be colorblind. If the mom is not colorblind, then she must be a carrier - she must have 1 normal X and 1 colorblind X. Mom is either colorblind (with 2 colorblind Xs) or she is a carrier. Dad is definitely colorblind.


What is the likelihood that the children of a woman heterozygous for colorblindness and a man with normal color vision will be colorblind?

50/50 because the child gets 26 chromozones from each parent so the chances are 50/50.