Best Answer

1 No.

2 No.

3 Yes.

Q: Which set is closed under the given operation 1 integers under division 2 negative integers under subtraction 3 odd integers under multiplication?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

I am not sure there are any fundamental operations of integers. The fundamental operations of arithmetic are addition, subtraction, multiplication and division. However, the set of integers is not closed with respect to division: that is, the division of one integer by another does not necessarily result in an integer.

The answer depends on which binary operation you mean when you say "combining". Addition, subtraction, multiplication, division, exponentiation, etc.

Addition, subtraction and multiplication.

In the first stage, the set of all integers needs an extension - to the set of rational numbers - to get closure for division (which is the inverse operation to multiplication).

They are not the same!The set of integers is closed under multiplication but not under division.Multiplication is commutative, division is not.Multiplication is associative, division is not.

Related questions

Parenthesis Exponent Multiplication Division Addition Subtraction PEMDAS ( the multiplication and division is based on which of them comes FIRST )

I am not sure there are any fundamental operations of integers. The fundamental operations of arithmetic are addition, subtraction, multiplication and division. However, the set of integers is not closed with respect to division: that is, the division of one integer by another does not necessarily result in an integer.

The answer depends on which binary operation you mean when you say "combining". Addition, subtraction, multiplication, division, exponentiation, etc.

When you do your homework at home.

Yes, at least for integers: You see how often you can subtract a quantity. But I guess it is more useful to think of division as the inverse of multiplication.

Addition, subtraction and multiplication.

Arithmetic (watch the spelling) refers to the basic math taught in primary school: addition, subtraction, multiplication and division of integers, fractions, and decimals.

In the first stage, the set of all integers needs an extension - to the set of rational numbers - to get closure for division (which is the inverse operation to multiplication).

In the first stage, the set of all integers needs an extension - to the set of rational numbers - to get closure for division (which is the inverse operation to multiplication).

Whole numbers subtraction: YesDivision integers: No.

They are not the same!The set of integers is closed under multiplication but not under division.Multiplication is commutative, division is not.Multiplication is associative, division is not.

You can have counting number in multiplication and addition. All integers are in multiplication, addition and subtraction. All rational numbers are in all four. Real numbers, complex numbers and other larger sets are consistent with the four operations.