I gotchu homie:
It's The equation has x = 4 and x = -4 as its only solutions.
Draw the graph of the equation. the solution is/are the points where the line cuts the x(horisontal) axis .
Normally it has two solutions but sometimes the solutions can be the same.
When you graph the quadratic equation, you have three possibilities... 1. The graph touches x-axis once. Then that quadratic equation only has one solution and you find it by finding the x-intercept. 2. The graph touches x-axis twice. Then that quadratic equation has two solutions and you also find it by finding the x-intercept 3. The graph doesn't touch the x-axis at all. Then that quadratic equation has no solutions. If you really want to find the solutions, you'll have to go to imaginary solutions, where the solutions include negative square roots.
No. Some have two solutions where as some have none.
The number of solutions for a quadratic equation corresponds to the points where the graph of the quadratic function intersects the x-axis. If the graph touches the x-axis at one point, the equation has one solution (a double root). If it intersects at two points, there are two distinct solutions, while if the graph does not touch or cross the x-axis, the equation has no real solutions. This relationship is often analyzed using the discriminant from the quadratic formula: if the discriminant is positive, there are two solutions; if zero, one solution; and if negative, no real solutions.
If the discriminant of a quadratic equation is less than zero then it has no solutions.
Draw the graph of the equation. the solution is/are the points where the line cuts the x(horisontal) axis .
Normally it has two solutions but sometimes the solutions can be the same.
When you graph the quadratic equation, you have three possibilities... 1. The graph touches x-axis once. Then that quadratic equation only has one solution and you find it by finding the x-intercept. 2. The graph touches x-axis twice. Then that quadratic equation has two solutions and you also find it by finding the x-intercept 3. The graph doesn't touch the x-axis at all. Then that quadratic equation has no solutions. If you really want to find the solutions, you'll have to go to imaginary solutions, where the solutions include negative square roots.
No. Some have two solutions where as some have none.
The number of solutions for a quadratic equation corresponds to the points where the graph of the quadratic function intersects the x-axis. If the graph touches the x-axis at one point, the equation has one solution (a double root). If it intersects at two points, there are two distinct solutions, while if the graph does not touch or cross the x-axis, the equation has no real solutions. This relationship is often analyzed using the discriminant from the quadratic formula: if the discriminant is positive, there are two solutions; if zero, one solution; and if negative, no real solutions.
The quadratic equation in standard form is: ax2 + bx + c = 0. The solution is x = [-b ± √b2- 4ac)] ÷ 2a You can use either plus or minus - a quadratic equation may have two solutions.
A quadratic equation ax2 + bx + c = 0 has the solutions x = [-b +/- sqrt(b2 - 4*a*c)]/(2*a)
The number of solutions an equation has depends on the nature of the equation. A linear equation typically has one solution, a quadratic equation can have two solutions, and a cubic equation can have three solutions. However, equations can also have no solution or an infinite number of solutions depending on the specific values and relationships within the equation. It is important to analyze the equation and its characteristics to determine the number of solutions accurately.
In the graph of a quadratic equation, the plotted points form a parabola. This parabola usually intersects the X axis at two different points. Those two points are also the two solutions for the quadratic equation. Alternatively: Quadratic equations are formed by multiplying two linear equations together. Each of the linear equations has one solution - multiplying two together means that the solution for either is also a solution for the quadratic equation - hence you get two possible solutions for the quadratic unless both linear equations have exactly the same solution. Example: Two linear equations : x - a = 0 x - b = 0 Multiplied together: (x - a) ( x - b ) = 0 Either a or b is a solution to this quadratic equation. Hence most often you have two solutions but never more than two and always at least one solution.
b^2 - 4ac, the discriminant will tell you that a quadratic equation may have one real solution( discriminant = 0 ) , two real solutions( discriminant > 0 ), or no real solutions( discriminant < 0 ).
Without an equality sign the given expression can't be considered to be an equation but if it equals 0 then using the quadratic equation formula will give its solutions.