In physics, **work** is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, it is often represented as the product of force and displacement. A force is said to do positive work if (when applied) it has a component in the direction of the displacement of the point of application. A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.

For example, when a ball is held above the ground and then dropped, the work done by the gravitational force on the ball as it falls is equal to the weight of the ball (a force) multiplied by the distance to the ground (a displacement). When the force F is constant and the angle between the force and the displacement s is θ, then the work done is given by:

Work is a scalar quantity,[1] so it has only magnitude and no direction. Work transfers energy from one place to another, or one form to another. The SI unit of work is the joule (J), the same unit as for energy.

According to Jammer,[2] the term work was introduced in 1826 by the French mathematician Gaspard-Gustave Coriolis[3] as "weight lifted through a height", which is based on the use of early steam engines to lift buckets of water out of flooded ore mines. According to Rene Dugas, French engineer and historian, it is to Solomon of Caux "that we owe the term work in the sense that it is used in mechanics now".[4] Although work was not formally used until 1826, similar concepts existed before then. In 1759, John Smeaton described a quantity that he called "power" "to signify the exertion of strength, gravitation, impulse, or pressure, as to produce motion." Smeaton continues that this quantity can be calculated if "the weight raised is multiplied by the height to which it can be raised in a given time," making this definition remarkably similar to Coriolis'.[5]

The SI unit of work is the joule (J), named after the 19th-century English physicist James Prescott Joule, which is defined as the work required to exert a force of one newton through a displacement of one metre.

The dimensionally equivalent newton-metre (N⋅m) is sometimes used as the measuring unit for work, but this can be confused with the measurement unit of torque. Usage of N⋅m is discouraged by the SI authority, since it can lead to confusion as to whether the quantity expressed in newton metres is a torque measurement, or a measurement of work.[6]

Non-SI units of work include the newton-metre, erg, the foot-pound, the foot-poundal, the kilowatt hour, the litre-atmosphere, and the horsepower-hour. Due to work having the same physical dimension as heat, occasionally measurement units typically reserved for heat or energy content, such as therm, BTU and calorie, are utilized as a measuring unit.

The work W done by a constant force of magnitude F on a point that moves a displacement s in a straight line in the direction of the force is the product