In Fourier series, the constant term, or the average value of the function over one period, is divided by two when computing the Fourier coefficients. This is because the constant term corresponds to the zero-frequency component, which represents the average value of the periodic function. When calculating the Fourier series, the coefficients are derived from integrals that include the full period of the function, leading to the factor of ( \frac{1}{2} ) for the constant term to ensure accurate representation. This adjustment maintains the overall balance of the series in reconstructing the original function.
A geometric series.
It means that the rise divided by the run for a curve has the same value. If A and B are any two points on the curve, with coordinates (Xa, Ya) and (Xb, Yb), then (Yb - Ya)/(Xb - Xa) is a constant.
26 divided by two is equal to 13
144 divided by two equals 72.
It is the constant of proportionality.
The spring constant of two springs connected in series is less than the spring constant of a single spring. When springs are connected in series, their effective spring constant is reduced, as the total force required to stretch or compress them increases compared to a single spring.
Oh, dude, Fourier series is like this mathematical tool that helps break down periodic functions into a sum of sine and cosine functions. It's named after this French mathematician, Fourier, who was probably like, "Hey, let's make math even more confusing." But hey, it's super useful in signal processing and stuff, so thanks, Fourier, I guess.
No, but the last movie is.
A geometric series.
Laplace = analogue signal Fourier = digital signal Notes on comparisons between Fourier and Laplace transforms: The Laplace transform of a function is just like the Fourier transform of the same function, except for two things. The term in the exponential of a Laplace transform is a complex number instead of just an imaginary number and the lower limit of integration doesn't need to start at -∞. The exponential factor has the effect of forcing the signals to converge. That is why the Laplace transform can be applied to a broader class of signals than the Fourier transform, including exponentially growing signals. In a Fourier transform, both the signal in time domain and its spectrum in frequency domain are a one-dimensional, complex function. However, the Laplace transform of the 1D signal is a complex function defined over a two-dimensional complex plane, called the s-plane, spanned by two variables, one for the horizontal real axis and one for the vertical imaginary axis. If this 2D function is evaluated along the imaginary axis, the Laplace transform simply becomes the Fourier transform.
It's (I1./I2*)/(|I1./I2*|), where I2* is the complex conjugate of the Fourier transformed Image 2
Two-way roads are divided into there lanes throughout the country. This occurs in big cities, because there is constant traffic throughout the day.
The "figure" is the gravitational constant.
When two springs are connected in series, the effective spring constant is calculated by adding the reciprocals of the individual spring constants. This results in a higher overall spring constant, making the system stiffer and harder to stretch or compress. This means that the overall system will have a higher resistance to deformation and will require more force to change its shape.
The Deathly Hallows is being divided into two movies. After the Deathly Hallows Part II, the series will be over.
It means that the rise divided by the run for a curve has the same value. If A and B are any two points on the curve, with coordinates (Xa, Ya) and (Xb, Yb), then (Yb - Ya)/(Xb - Xa) is a constant.
Current travels in loops. In series you have one loop, or path for current to take. With parallel connections, there's at least two. This is why current divides in parallel and not in series.