It depends whether you mean ml or ms. There are 4 quantum numbers, n, l, ml, ms They have long names respectively principal, azimuthal (angular momentum), magnetic and spin. n can have values 0, 1, 2, 3, 4, 5...... l depends on n, and can have values, 0 to (n-1) (0 is an s orbital, 1 is a p subshell, 2 is a d subshell, 3 is a f subshell etc ml can have -l to +l (sorry this font is rubbish the letter l looks like a 1) so for a d orbital, where l = 2, it can be -2, -1 0, +1, +2. Five d orbitals in all. ms can be -1/2 or +1/2 (These are the maximum of 2 electrons having opposite spin) l depends on n, and can have values, 0 to (n-1) (0 is an s orbital, 1 is a p subshell, 2 is a d subshell, 3 is a f subshell etc Read more: What_are_the_possible_values_for_the_quantum_numbers
Chat with our AI personalities
The magnetic quantum number (m) represents the orientation of the orbital in space and can take integer values from -l to +l, including zero. It depends on the possible values of the angular quantum number (l), which describes the shape of the orbital (s, p, d, etc). The number of possible values for m is 2l+1 for each value of l.
The third quantum number is the magnetic quantum number, which describes the orientation of the orbital in space. For a 2p orbital, the possible values of the magnetic quantum number range from -1 to 1, representing the three different orientations of the p orbital in space. In the case of 2p3, the magnetic quantum number is 1.
The possible values for the magnetic quantum number (m1) for 8s electrons range from -0 to 0, which means there is only one possible orientation in space. The m1 quantum number specifies the orientation of the electron's magnetic moment in an external magnetic field.
"Magnetic quantum number" is a quantum number that corresponds to individual electrons, not to an entire atom.
The magnetic quantum number ml depends on the orbital angular momentum (azimuthal) quantum number, l, which in turn depends on the principal quantum number, n. The orbital angular momentum (azimuthal) quantum number, l, runs from 0 to (n-1) where n is the principal quantum number. l= 0 is an s orbital, l= 1 is a p subshell, l= 2 is a d subshell, l=3 is an f subshell. The magnetic quantum number, ml, runs from -l to +l (sorry this font is rubbish the letter l looks like a 1) so for an f orbital the values are -3. -2, -1, 0, +1, +2, +3, so 7 f orbitals in total. ml "defines " the shape of the orbital and the number within the subshell.
The orbital quantum number (l) specifies the shape of an orbital, while the magnetic quantum number (m) specifies the orientation of the orbital in space. Orbital quantum number ranges from 0 to n-1, where n is the principal quantum number. Magnetic quantum number ranges from -l to +l.