i think its wavelengthx speed (300000000)= 6000000000
The formula to calculate wavelength is: wavelength = speed of sound / frequency. Plugging in the values: wavelength = 1430 m/s / 286 Hz = 5 meters. Therefore, the wavelength of the sound wave traveling through the water is 5 meters.
The speed of sound in water is approximately 1482 m/s. To find the wavelength, you can use the formula: wavelength = speed of sound / frequency. Thus, the wavelength of a sound with a frequency of 286 Hz traveling through water would be approximately 5.18 meters.
The speed of sound in air at room temperature is approximately 343 m/s. To find the frequency, you can use the formula: frequency = speed of sound / wavelength. So, the frequency of a sound wave with a wavelength of 78 meters in air at room temperature would be 343 m/s / 78 m = around 4.4 Hz.
You can calculate frequency from wavelength using the equation: frequency = speed of light / wavelength. The speed of light in a vacuum is approximately 3.00 x 10^8 meters per second. By dividing this speed by the wavelength of light in meters, you can determine the frequency in hertz.
To find the frequency of a wavelength, you can use the formula: frequency speed of light / wavelength. The speed of light is a constant value of 3.00 x 108 meters per second. Simply divide the speed of light by the wavelength to calculate the frequency.
To find the wavelength, you can use the formula: wavelength = speed of sound / frequency. Plugging in the values, wavelength = 1430 m/s / 286 Hz = 5 meters. Therefore, the wavelength of the sound traveling through the water is 5 meters.
The formula to calculate wavelength is: wavelength = speed of sound / frequency. Plugging in the values: wavelength = 1430 m/s / 286 Hz = 5 meters. Therefore, the wavelength of the sound wave traveling through the water is 5 meters.
The speed of sound in water is approximately 1482 m/s. To find the wavelength, you can use the formula: wavelength = speed of sound / frequency. Thus, the wavelength of a sound with a frequency of 286 Hz traveling through water would be approximately 5.18 meters.
The speed of sound in air at room temperature is approximately 343 m/s. To find the frequency, you can use the formula: frequency = speed of sound / wavelength. So, the frequency of a sound wave with a wavelength of 78 meters in air at room temperature would be 343 m/s / 78 m = around 4.4 Hz.
You can calculate frequency from wavelength using the equation: frequency = speed of light / wavelength. The speed of light in a vacuum is approximately 3.00 x 10^8 meters per second. By dividing this speed by the wavelength of light in meters, you can determine the frequency in hertz.
To find the frequency of a wavelength, you can use the formula: frequency speed of light / wavelength. The speed of light is a constant value of 3.00 x 108 meters per second. Simply divide the speed of light by the wavelength to calculate the frequency.
To find the wavelength of a frequency, you can use the formula: wavelength speed of light / frequency. The speed of light is approximately 3.00 x 108 meters per second. Simply divide the speed of light by the frequency of the wave to calculate the wavelength.
The formula to calculate the frequency of a wave is: frequency = speed of wave / wavelength. Plugging in the values: frequency = 340 m/s / 1.25 m = 272 Hz. So, the frequency of the sound wave is 272 Hz.
The wavelength of a sound wave is the distance between two consecutive points that are in phase with each other, such as two peaks or two troughs. It is usually measured in meters and is inversely related to the frequency of the sound wave.
To find the frequency of a wavelength, you can use the formula: frequency speed of light / wavelength. The speed of light is a constant value of approximately 3.00 x 108 meters per second. By dividing the speed of light by the wavelength, you can calculate the frequency of the wave.
Wavelength x frequency = speed of the wave, so wavelength = speed / frequency. In SI units, wavelength (in meters) = speed (in meters/second) / frequency (in Hertz). If you are talking about electromagnetic waves in avacuum, use 300,000,000 m/s for the speed.
The wavelength of the tuning note A440 can be found using the formula: wavelength = speed of sound / frequency. The period can be calculated using the formula: period = 1 / frequency. For A440 (440 Hz), frequency is 440 Hz, speed of sound is approximately 343 m/s, so the wavelength is around 0.779 meters and the period is approximately 0.00227 seconds.