answersLogoWhite

0

Formula is velocity=frequency X wavelength

so Wavelength = 5m

User Avatar

Wiki User

15y ago

What else can I help you with?

Related Questions

Find the wavelength of a sound with a frequency of 286 Hz traveling through the water?

The speed of sound in water is approximately 1482 m/s. To find the wavelength, you can use the formula: wavelength = speed of sound / frequency. Thus, the wavelength of a sound with a frequency of 286 Hz traveling through water would be approximately 5.18 meters.


The speed of sound in water is 1430 meters per second Find the wavelength of a sound with a frequency of 286 Hz traveling through the water?

The formula to calculate wavelength is: wavelength = speed of sound / frequency. Plugging in the values: wavelength = 1430 m/s / 286 Hz = 5 meters. Therefore, the wavelength of the sound wave traveling through the water is 5 meters.


The speed of sound in water is 1430 meters per second.Find the wavelength of a sound with a frequency of 286 Hz traveling through the water?

The formula to calculate wavelength is wavelength = speed of sound / frequency. Plugging in the values, we get wavelength = 1430 m/s / 286 Hz = 5 meters. Therefore, the wavelength of the sound wave traveling through water is 5 meters.


If a sound traveling through a medium has a frequency of 520 Hz and a wavelength of m what is the speed?

The formula for the speed of a wave is speed = frequency x wavelength. Plugging in the values given, the speed of the sound wave traveling through the medium would be 520 Hz x m = 520 m/s.


In the Doppler effect for sound if the source and receiver are at rest but the air is moving will there be any change in frequency or wavelength?

No, if the source and receiver are stationary and only the air is moving, there will be no change in the frequency or wavelength of the sound. The Doppler effect occurs when either the source or the receiver (or both) is in motion relative to the medium through which the sound is traveling.


The speed of sound in water is 1430 meters per second What is the wavelength of a sound with a frequency of 286 Hz traveling through the water?

The formula to calculate wavelength is: wavelength = speed of sound / frequency. Substituting the values given, we get: wavelength = 1430 m/s / 286 Hz = 5 meters. Therefore, the wavelength of the sound traveling through water with a frequency of 286 Hz is 5 meters.


What is the relationship connecting the frequency of the sound source with the wavelength and the speed of sound in air?

The frequency of a sound source is directly related to the wavelength and the speed of sound in air through the equation: speed of sound = frequency x wavelength. As the frequency of the sound increases, the wavelength decreases, and vice versa, provided the speed of sound remains constant in the medium.


What is the wavelength of a sound made by a violin string that has a frequency of 640 Hz if the sound is traveling at 350 meters per second?

Wavelength = speed/frequency = 350/640 = 54.7 centimeters (rounded)


What is the wavelength of sound waves with frequency of 510 Hz while traveling in freshwater?

2.91 metres.


What is the wavelength of sound waves with frequency 510Hz while traveling in fresh water?

The speed of sound in fresh water is approx 1,500 metres per second. So wavelength = speed/frequency = 2.94 metres.


If a sound traveling through a medium has a frequency of 520 Hz and a wavelength of 6.92 Ms what is its speed?

The speed of sound can be calculated using the formula speed = frequency x wavelength. Plugging in the values gives: speed = 520 Hz x 6.92 Ms = 3,590,400 m/s.


What is the relation between the frequency wavelength and speed of a sound wave?

The speed of a sound wave is determined by its frequency and wavelength through the equation: speed = frequency x wavelength. This means that as frequency increases, wavelength decreases, and vice versa, to maintain a constant speed.