9, 4, and 11 are three dimensionless numbers.
Yes, they can represent the lengths of the sides of a triangle.
You can take three straight sticks, cut them to lengths of 9, 4, and 11 inches, then lay them down
on a table so that the ends hook up and they form a triangle.
To determine if segments with lengths 9, 4, and 11 can form a triangle, we can use the triangle inequality theorem. This states that the sum of the lengths of any two sides must be greater than the length of the third side. In this case, 9 + 4 = 13, which is greater than 11; 9 + 11 = 20, which is greater than 4; and 4 + 11 = 15, which is greater than 9. Since all conditions are satisfied, the segments can indeed form a triangle.
Yes, the sum of any two sides is always greater than the third side: 9 + 4 > 11 4 + 11 > 9 11 + 9 > 4
No it is not possible because the sum of the lengths of the two sides has to be greater than the length of the third side. 5 + 4 = 9 which is less than 11, so we can't form a triangle with these sides.
No.
A scalene triangle.
4+7=11 7+4=11 11-4=7 11-7=4
Yes and it will be a scalene triangle
(-9) + (-11-4) + (-11-63) =-9 - 11 - 4 - 11 - 63 = -98
A triangle with sides measuring ; 4 feet , 6 feet and 9 feet is a right triangle. A triangle is a right triangle as long as it has one 90 degree point.
Yes because the sum of its two shortest sides is greater than its longest side.
4+9>5 5+9>4 4+5 is not greater than 9 No, since it doesn't comply with the Triangle Inequality Theorem (the sum of the lengths of any two sides of a triangle is greater than the length of the third side)
4+7=11 7+4=11 11-4=7 11-7=4 11=4+7 11=7+4 7=11-4 4=11-7