answersLogoWhite

0

Pierre De Fermat 's last Theorem.

The conditions:

x,y,z,n are the integers and >0. n>2.

Proof:

z^n=/x^n+y^n.

We have;

z^3=[z(z+1)/2]^2-[(z-1)z/2]^2

Example;

5^3=[5(5+1)/2]^2-[5(5-1)/2]^2=225-100=125

And

z^3+(z-1)^3=[z(z+1)/2]^2-[(z-2)(z-1)/2]^2

Example;

5^3+4^3=[5(5+1)/2]^2-[(5-2)(5-1)/2]^2=225-36=189

And

z^3+(z-1)^3+(z-2)^3=[z(z+1)/2]^2-[(z-3)(z-2)/2]^2

Example

5^3+4^3+2^3=[5(5+1)/2]^2-[(5-3)(5-2)/2]^2=225-9=216

And

z^3+(z-1)^3+(z-2)^3+(z-3)^3=[z(z+1)/2]^2-[(z-4)(z-3)/2]^2

Example

5^3+4^3+3^3+2^3=[5(5+1)/2]^2-[(5-4)(5-3)/2]^2=225-1=224

General:

z^3+(z-1)^3+....+(z-m)^3=[z(z+1)/2]^2-[(z-m-1)(z-m)/2]^2

We have;

z^3=z^3+(z-m-1)^3 - (z-m-1)^3.

Because:

z^3+(z-m-1)^3=[z^3+(z-1)^3+....+(z-m-1)^3] - [(z-1)^3+....+(z-m)^3]

So

z^3=[z(z+1)/2]^2-[(z-m-2)(z-m-1)/2]^2 - [z(z-1)/2]^3+[(z-m-1)(z-m)/2]^2 - (z-m-1)^3.

Similar:

z^3=z^3+(z-m-2)^3 - (z-m-2)^3.

So

z^3=[z(z+1)/2]^2-[(z-m-3)(z-m-2)/2]^2 - [z(z-1)/2]^3+[(z-m-2)(z-m-1)/2]^2 - (z-m-2)^3.

....

....

Suppose:

z^n=x^n+y^n

So

z^(n-3)*z^3=x^(n-3)^n*x^3+y^(n-3)*y^3.

So

z^(n-3)*{[z(z+1)/2]^2-[(z-m-2)(z-m-1)/2]^2 - [z(z-1)/2]^3+[(z-m-1)(z-m)/2]^2 - (z-m-1)^3}=x^(n-3)*{[x(x+1)/2]^2-[(x-m-2)(x-m-1)/2]^2 - [x(x-1)/2]^3+[(x-m-1)(x-m)/2]^2 - (x-m-1)^3}+y^(n-3)*{[y(y+1)/2]^2-[(y-m-2)(y-m-1)/2]^2 - [y(y-1)/2]^3+[(y-m-1)(y-m)/2]^2 - (y-m-1)^3}

Similar:

z^(n-3)*{[z(z+1)/2]^2-[(z-m-3)(z-m-2)/2]^2 - [z(z-1)/2]^3+[(z-m-2)(z-m-1)/2]^2 - (z-m-2)^3=x^(n-3)*{[x(x+1)/2]^2-[(x-m-3)(x-m-2)/2]^2 - [x(x-1)/2]^3+[(x-m-2)(x-m-1)/2]^2 - (x-m-2)^3+y^(n-3)*{[y(y+1)/2]^2-[(y-m-3)(y-m-2)/2]^2 - [y(y-1)/2]^3+[(y-m-2)(y-m-1)/2]^2 - (y-m-2)^3.

....

....

Because it is codified .

So

Impossible all are the integers.

So:

z^n=/x^n+y^n.

ISHTAR.

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake

Add your answer:

Earn +20 pts
Q: Can you understand my proof about Fermat?
Write your answer...
Submit
Still have questions?
magnify glass
imp