13 is not a polynomial.
a polynomial of degree...............is called a cubic polynomial
no...
In answering this question it is important that the roots are counted along with their multiplicity. Thus a double root is counted as two roots, and so on. The degree of a polynomial is exactly the same as the number of roots that it has in the complex field. If the polynomial has real coefficients, then a polynomial with an odd degree has an odd number of roots up to the degree, while a polynomial of even degree has an even number of roots up to the degree. The difference between the degree and the number of roots is the number of complex roots which come as complex conjugate pairs.
It is the number (coefficient) that belongs to the variable of the highest degree in a polynomial.
the degree of polynomial is determined by the highest exponent its variable has.
1
Sort of... but not entirely. Assuming the polynomial's coefficients are real, the polynomial either has as many real roots as its degree, or an even number less. Thus, a polynomial of degree 4 can have 4, 2, or 0 real roots; while a polynomial of degree 5 has either 5, 3, or 1 real roots. So, polynomial of odd degree (with real coefficients) will always have at least one real root. For a polynomial of even degree, this is not guaranteed. (In case you are interested about the reason for the rule stated above: this is related to the fact that any complex roots in such a polynomial occur in conjugate pairs; for example: if 5 + 2i is a root, then 5 - 2i is also a root.)
First look at the degree of each term: this is the power of the variable. The highest such number, from all the terms in the polynomial is the degree of the polynomial. Thus x2 + 1/7*x + 3 has degree 2. x + 7 - 2x3 + 0.8x5 has degree 5.
The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.The answer depends on where, in the sequence, the missing number is meant to go.Furthermore, whatever number you choose and wherever in the sequence it is meant to be, it is always possible to find a polynomial of degree 5 that will go through all five points given in the question and your chosen one.Using a polynomial of degree 4, the next number is -218.
The degree is equal to the maximum number of times the graph can cross a horizontal line.
The order of degree of a polynomial is the highest power of the variable in the polynomial. For example, in the polynomial 2x^3 + 5x^2 - x + 7, the order of degree is 3 because the term with the highest power of x is x^3. This determines the overall complexity and behavior of the polynomial, helping to understand its characteristics such as end behavior and number of roots.