Study guides

☆☆

Q: Do units of measure follow the standard deviation?

Write your answer...

Submit

Still have questions?

Related questions

They are effectively the same but the standard deviation is more popular because the units of measurement are the same as those for the variable.

Standard deviation has the same unit as the data set unit.

Because it is in same units as the original data. For example, if you have a sample of lengths, all in centimetres, the sample variance will be in units of centrimetres2 which might be more difficult to interpret but the sample standard deviation with be in units of centimetres, which would be relatively easy to intepret with reference to the data.

Suppose the mean of a sample is 1.72 metres, and the standard deviation of the sample is 3.44 metres. (Notice that the sample mean and the standard deviation will always have the same units.) Then the coefficient of variation will be 1.72 metres / 3.44 metres = 0.5. The units in the mean and standard deviation 'cancel out'-always.

The standard deviation has the same measurement units as the variable and is, therefore, more easily comprehended.

These measures are calculated for the comparison of dispersion in two or more than two sets of observations. These measures are free of the units in which the original data is measured. If the original data is in dollar or kilometers, we do not use these units with relative measure of dispersion. These measures are a sort of ratio and are called coefficients. Each absolute measure of dispersion can be converted into its relative measure. Thus the relative measures of dispersion are:Coefficient of Range or Coefficient of Dispersion.Coefficient of Quartile Deviation or Quartile Coefficient of Dispersion.Coefficient of Mean Deviation or Mean Deviation of Dispersion.Coefficient of Standard Deviation or Standard Coefficient of Dispersion.Coefficient of Variation (a special case of Standard Coefficient of Dispersion)

These measures are calculated for the comparison of dispersion in two or more than two sets of observations. These measures are free of the units in which the original data is measured. If the original data is in dollar or kilometers, we do not use these units with relative measure of dispersion. These measures are a sort of ratio and are called coefficients. Each absolute measure of dispersion can be converted into its relative measure. Thus the relative measures of dispersion are:Coefficient of Range or Coefficient of Dispersion.Coefficient of Quartile Deviation or Quartile Coefficient of Dispersion.Coefficient of Mean Deviation or Mean Deviation of Dispersion.Coefficient of Standard Deviation or Standard Coefficient of Dispersion.Coefficient of Variation (a special case of Standard Coefficient of Dispersion)

The mean is 12 and each observation is 8 units away from 12.

Non standard units used in the phillipines

The formula for standard deviation has both a square (which is a power of 2) and a square-root (a power of 1/2). Both must be there to balance each other, to keep the standard deviation value's magnitude similar to (having the same units as) the sample numbers from which it's calculated. If either is removed from the formula, the resulting standard deviation value will have different units, reducing its usefulness as a meaningful statistic.

It depends on what you are trying to measure. There are different standard units for different characteristics.

'Standard' units provide a fixed, recognisable measurement by which everything can be compared.

People also asked