Yes.
no shape does! * * * * * Not true. A parallelogram has rotational symmetry of order 2, but no lines of symmetry.
It's just when you rotate a shape. Each time you rotate it, and it looks exactly like the shape you had before you started rotating, is one line of rotational symmetry.
Oh, dude, a regular hexagon has six sides, so it has six lines of symmetry. Each line of symmetry represents a different way you can rotate the hexagon and have it look the same. So, the order of rotational symmetry for a regular hexagon is 6. Like, it's symmetry, but make it hexagonal.
none shapes have 1 rotational symmetry because in rotational symmetry one is none
When a shape is rotated about its centre, if it comes to rest in a position and looks exactly like the original, then it has rotational symmetry. A shape like an equilateral triangle would therefore have an order of rotational symmetry of 3. The general rule for a regular polygon (shapes such as pentagons, heptagons, octagons etc. is, that the number of sides is the same as the number of lines of symmetry, which is also the same as the rotational symmetry order). This means that a regular hexagon has 6 sides, 6 lines of symmetry and an order of rotational symmetry of 6. Following from this, then a square, which is a regular polygon, has 4 sides, 4 lines of symmetry and an order of rotational symmetry of 4. If a shape has rotational symmetry, it must have either line symmetry or point symmetry or both. For example, a five pointed star has 5 lines of symmetry and rotational symmetry of order 5, but does not have point symmetry. A parallelogram has no line of symmetry, but has rotational symmetry of order 2 and also point symmetry. Only a shape which has line symmetry or point symmetry can have rotational symmetry. When there is point symmetry and also rotational symmetry, the order of the latter is even. For example, the letter 'S' has rotational symmetry of order 2, the regular hexagon of order 6. On this basis, we would suggest that the letter 'F' does not have a rotational symmetry order as it does not have either line symmetry or point symmetry. It doesn't have a centre around which you could rotate it. Sounds weird, but given the definitions, we think this is the case.
A line segment would have rotational symmetry.
Rotational symmetry is when you rotate an object n order to see it in the same shape but n different position somehow the shape might look different unless u turn the paper.
A shape like an equilateral triangle would therefore have an order of rotational symmetry of 3
A rectangle
If it is a regular 5 sided pentagon then its order of rotational symmetry is 5
A square
This occurs if something has rotational or radial symmetry.