No, it is quite possible for the fractions not to have common factors, even if you cross-cancel.
First, change it so that the two fractions have the same denominator (by changing the fractions into equivalent fractions). Once the two fractions have the same denominator, it is simply a case of subtracting the numerators, leaving the denominator the same. Finally, reduce the fraction to its lowest terms (if possible).
Only if you have just two fractions.
If the fractions are both proper fractions ... equivalent to less than 1 ... thenthat's always true ... the product is always less than either factor.
It helps to reduce fractions.
8/10, which can reduce to 4/5
Reduce them to their lowest terms
you divide the numerator by the denominator, if you get the same to the other fractions, it is proportional. Another solution is if you reduce the two fractions to simplest form and they are the same, they are also proportional.
There is no such thing as THE two fractions. There are infinitely many fractions.
Like and unlike fractions only make sense when you have two [or more] fractions. One fraction, such as 5/12, is always like itself.
You multiply the numerator not the denomanater because the demomenator will always be the same.
You first convert them to similar fractions, i.e., to fractions that have the same denominator.* Step one: find a common denominator.* Step two: convert both fractions to equivalent fractions that have that denominator.
Whatever two fractions you name, no matter how close together they are, I can always name another fraction between them. In fact, there are an infinite number of fractions between any two fractions, no matter how close together they are. That goes for three-fourths and one-half.