f(x) and g(x) are generic names of functions - sort of variables that represent functions instead of numbers. That means they don't always stand for the same specific function.
How such functions are alike and different depends on what the specific functions are.
Assume f=f(x), g=g(x)and (f^-1)(x) is the functional inverse of f(x). (f+g)'=f'+g' (f*g)'=f'*g+f*g' product rule (f(g))'=g'*f'(g) compositional rule (f/g)'=(f'*g-f*g')/(g^2) quotient rule (d/dx)(x^r)=r*x^(r-1) power rule and applies for ALL r. where g^2 is g*g not g(g)
PIERRE DE FERMAT's last Theorem. (x,y,z,n) belong ( N+ )^4.. n>2. (a) belong Z F is function of ( a.) F(a)=[a(a+1)/2]^2 F(0)=0 and F(-1)=0. Consider two equations F(z)=F(x)+F(y) F(z-1)=F(x-1)+F(y-1) We have a string inference F(z)=F(x)+F(y) equivalent F(z-1)=F(x-1)+F(y-1) F(z)=F(x)+F(y) infer F(z-1)=F(x-1)+F(y-1) F(z-x-1)=F(x-x-1)+F(y-x-1) infer F(z-x-2)=F(x-x-2)+F(y-x-2) we see F(z-x-1)=F(x-x-1)+F(y-x-1 ) F(z-x-1)=F(-1)+F(y-x-1 ) F(z-x-1)=0+F(y-x-1 ) give z=y and F(z-x-2)=F(x-x-2)+F(y-x-2) F(z-x-2)=F(-2)+F(y-x-2) F(z-x-2)=1+F(y-x-2) give z=/=y. So F(z-x-1)=F(x-x-1)+F(y-x-1) don't infer F(z-x-2)=F(x-x-2)+F(y-x-2) So F(z)=F(x)+F(y) don't infer F(z-1)=F(x-1)+F(y-1) So F(z)=F(x)+F(y) is not equivalent F(z-1)=F(x-1)+F(y-1) So have two cases. [F(x)+F(y)] = F(z) and F(x-1)+F(y-1)]=/=F(z-1) or vice versa So [F(x)+F(y)]-[F(x-1)+F(y-1)]=/=F(z)-F(z-1). Or F(x)-F(x-1)+F(y)-F(y-1)=/=F(z)-F(z-1). We have F(x)-F(x-1) =[x(x+1)/2]^2 - [(x-1)x/2]^2. =(x^4+2x^3+x^2/4) - (x^4-2x^3+x^2/4). =x^3. F(y)-F(y-1) =y^3. F(z)-F(z-1) =z^3. So x^3+y^3=/=z^3. n>2. .Similar. We have a string inference G(z)*F(z)=G(x)*F(x)+G(y)*F(y) equivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z)=G(x)*F(x)+G(y)*F(y) infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) we see G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=G(x)*F(-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=0+G(y)*F(y-x-1 ) give z=y. and G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)*F(-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)+G(y)*F(y-x-2) x>0 infer G(x)>0. give z=/=y. So G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) don't infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) don't infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) is not equiivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So have two cases [G(x)*F(x)+G(y)*F(y)]=G(z)*F(z) and [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z-1)*F(z-1) or vice versa. So [G(x)*F(x)+G(y)*F(y)] - [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z)*[F(z)-F(z-1)]. Or G(x)*[F(x) - F(x-1)] + G(y)*[F(y)-F(y-1)]=/=G(z)*[F(z)-F(z-1).] We have x^n=G(x)*[F(x)-F(x-1) ] y^n=G(y)*[F(y)-F(y-1) ] z^n=G(z)*[F(z)-F(z-1) ] So x^n+y^n=/=z^n Happy&Peace. Trần Tấn Cường.
f(x)=2x+8 g(x)=x4 (g*f)(-3)
if f(x) = x² → g(x) = ⅟₇ x² = x² / 7
Let f(x)=x2 Let g(x)=sin(x) f(g(x))=(sin(x))2 Which is usually written sin2 (x) g(f(x))=sin(x2 )
∫ [f'(x)g(x) - f(x)g'(x)]/(f(x)2 - g(x)2) dx = (1/2)ln[(f(x) - g(x))/(f(x) + g(x))] + C
d/dx [f(x) + g(x)] = d/dx [f(x)] + d/dx [g(x)] or f'(x) + g'(x) when x = 3, d/dx [f(x) + g(x)] = f'(3) + g'(3) = 1.1 + 7 = 8.1 d/dx [f(x)*g(x)] = f(x)*d/dx[g(x)] + d/dx[f(x)]*g(x) when x = 3, d/dx [f(x)*g(x)] = f(3)*g'(3) + f'(3)*g(3) = 5*7 + 1.1*(-4) = 35 - 4.4 = 31.1
Assume f=f(x), g=g(x)and (f^-1)(x) is the functional inverse of f(x). (f+g)'=f'+g' (f*g)'=f'*g+f*g' product rule (f(g))'=g'*f'(g) compositional rule (f/g)'=(f'*g-f*g')/(g^2) quotient rule (d/dx)(x^r)=r*x^(r-1) power rule and applies for ALL r. where g^2 is g*g not g(g)
f(x)=x+1 g(f(x))=x f(x)-1=x g(x)=x-1
While no set of rules can handle differentiating every expression, the following should help. For all of the following, assume c and n are constants, f(x) and g(x) are functions of x, and f'(x) and g'(x) mean the derivative of f and g respectively. Constant derivative rule:d/dx(c)=0 Constant multiple rule:d/dx(c*f(x))=c*f'(x) Sum and Difference Rule:d/dx(f(x)±g(x))=f'(x)±g'(x) Power rule:d/dx(xn)=n*xn-1 Product rule:d/dx(f(x)*g(x))=f'(x)*g(x) + g'(x)*f(x) Quotient rule:d/dx(f(x)/g(x))=(f'(x)*g(x)-g'(x)*f(x))/f(x)² Chain rule:d/dx(f(g(x))= f'(g(x))*g'(x)
To solve functions f ◦ g and g ◦ f: For f ◦ g, first find g(x) and then substitute it into f(x). For g ◦ f, first find f(x) and then substitute it into g(x). Simplify the resulting expression to get the final answer.
If f(x) is the inverse of g(x) then the domain of g(x) and the range of f(x) are the same.
∫ [f'(x)g(x) - f(x)g'(x)]/(f(x)2 + g(x)2) dx = arctan(f(x)/g(x)) + C C is the constant of integration.
To find (f-g)(x), we need to subtract g(x) from f(x). So, (f-g)(x) = f(x) - g(x). Substituting the given functions, we get (f-g)(x) = (x+8) - (-4x-3). Simplifying this expression, we get (f-g)(x) = x + 8 + 4x + 3 = 5x + 11. Therefore, (f-g)(x) = 5x + 11.
PIERRE DE FERMAT's last Theorem. (x,y,z,n) belong ( N+ )^4.. n>2. (a) belong Z F is function of ( a.) F(a)=[a(a+1)/2]^2 F(0)=0 and F(-1)=0. Consider two equations F(z)=F(x)+F(y) F(z-1)=F(x-1)+F(y-1) We have a string inference F(z)=F(x)+F(y) equivalent F(z-1)=F(x-1)+F(y-1) F(z)=F(x)+F(y) infer F(z-1)=F(x-1)+F(y-1) F(z-x-1)=F(x-x-1)+F(y-x-1) infer F(z-x-2)=F(x-x-2)+F(y-x-2) we see F(z-x-1)=F(x-x-1)+F(y-x-1 ) F(z-x-1)=F(-1)+F(y-x-1 ) F(z-x-1)=0+F(y-x-1 ) give z=y and F(z-x-2)=F(x-x-2)+F(y-x-2) F(z-x-2)=F(-2)+F(y-x-2) F(z-x-2)=1+F(y-x-2) give z=/=y. So F(z-x-1)=F(x-x-1)+F(y-x-1) don't infer F(z-x-2)=F(x-x-2)+F(y-x-2) So F(z)=F(x)+F(y) don't infer F(z-1)=F(x-1)+F(y-1) So F(z)=F(x)+F(y) is not equivalent F(z-1)=F(x-1)+F(y-1) So have two cases. [F(x)+F(y)] = F(z) and F(x-1)+F(y-1)]=/=F(z-1) or vice versa So [F(x)+F(y)]-[F(x-1)+F(y-1)]=/=F(z)-F(z-1). Or F(x)-F(x-1)+F(y)-F(y-1)=/=F(z)-F(z-1). We have F(x)-F(x-1) =[x(x+1)/2]^2 - [(x-1)x/2]^2. =(x^4+2x^3+x^2/4) - (x^4-2x^3+x^2/4). =x^3. F(y)-F(y-1) =y^3. F(z)-F(z-1) =z^3. So x^3+y^3=/=z^3. n>2. .Similar. We have a string inference G(z)*F(z)=G(x)*F(x)+G(y)*F(y) equivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z)=G(x)*F(x)+G(y)*F(y) infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) we see G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=G(x)*F(-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=0+G(y)*F(y-x-1 ) give z=y. and G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)*F(-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)+G(y)*F(y-x-2) x>0 infer G(x)>0. give z=/=y. So G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) don't infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) don't infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) is not equiivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So have two cases [G(x)*F(x)+G(y)*F(y)]=G(z)*F(z) and [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z-1)*F(z-1) or vice versa. So [G(x)*F(x)+G(y)*F(y)] - [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z)*[F(z)-F(z-1)]. Or G(x)*[F(x) - F(x-1)] + G(y)*[F(y)-F(y-1)]=/=G(z)*[F(z)-F(z-1).] We have x^n=G(x)*[F(x)-F(x-1) ] y^n=G(y)*[F(y)-F(y-1) ] z^n=G(z)*[F(z)-F(z-1) ] So x^n+y^n=/=z^n Happy&Peace. Trần Tấn Cường.
Последнее Пьер де Ферма теоремы. (x,y,z,n) принадлежать( N+ )^4. n>2. (a) принадлежать Z F является функцией( a.) F(a)=[a(a+1)/2]^2 F(0)=0 и F(-1)=0. Рассмотрим два уравнения F(z)=F(x)+F(y) F(z-1)=F(x-1)+F(y-1) непрерывный дедуктивного рассуждения F(z)=F(x)+F(y) эквивалент F(z-1)=F(x-1)+F(y-1) F(z)=F(x)+F(y) выводить F(z-1)=F(x-1)+F(y-1) F(z-x-1)=F(x-x-1)+F(y-x-1) выводить F(z-x-2)=F(x-x-2)+F(y-x-2) мы видим, F(z-x-1)=F(x-x-1)+F(y-x-1 ) F(z-x-1)=F(-1)+F(y-x-1 ) F(z-x-1)=0+F(y-x-1 ) давать z=y и F(z-x-2)=F(x-x-2)+F(y-x-2) F(z-x-2)=F(-2)+F(y-x-2) F(z-x-2)=1+F(y-x-2) давать z=/=y. так F(z-x-1)=F(x-x-1)+F(y-x-1) не выводить F(z-x-2)=F(x-x-2)+F(y-x-2) так F(z)=F(x)+F(y) не выводить F(z-1)=F(x-1)+F(y-1) так F(z)=F(x)+F(y) не эквивалентен F(z-1)=F(x-1)+F(y-1) Таким образом, возможны два случая. [F(x)+F(y)] = F(z) и F(x-1)+F(y-1)]=/=F(z-1) или наоборот так [F(x)+F(y)]-[F(x-1)+F(y-1)]=/=F(z)-F(z-1). или F(x)-F(x-1)+F(y)-F(y-1)=/=F(z)-F(z-1). у нас есть F(x)-F(x-1) =[x(x+1)/2]^2 - [(x-1)x/2]^2. =(x^4+2x^3+x^2/4) - (x^4-2x^3+x^2/4). =x^3. F(y)-F(y-1) =y^3. F(z)-F(z-1) =z^3. так x^3+y^3=/=z^3. n>2. аналогичный непрерывный дедуктивного рассуждения G(z)*F(z)=G(x)*F(x)+G(y)*F(y) эквивалент G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z)=G(x)*F(x)+G(y)*F(y) выводить G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) выводить G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) мы видим, G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=G(x)*F(-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=0+G(y)*F(y-x-1 ) давать z=y. и G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)*F(-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)+G(y)*F(y-x-2) x>0 выводить G(x)>0. давать z=/=y. так G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y)не выводить G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) так G(z)*F(z)=G(x)*F(x)+G(y)*F(y) не выводить G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) так G(z)*F(z)=G(x)*F(x)+G(y)*F(y) не эквивалентен G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) Таким образом, возможны два случая. [G(x)*F(x)+G(y)*F(y)]=G(z)*F(z) и [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z-1)*F(z-1) или наоборот. так [G(x)*F(x)+G(y)*F(y)] - [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z)*[F(z)-F(z-1)]. или G(x)*[F(x) - F(x-1)] + G(y)*[F(y)-F(y-1)]=/=G(z)*[F(z)-F(z-1).] у нас есть x^n=G(x)*[F(x)-F(x-1) ] y^n=G(y)*[F(y)-F(y-1) ] z^n=G(z)*[F(z)-F(z-1) ] так x^n+y^n=/=z^n Счастливые и мира. Trần Tấn Cường.
To: trantancuong21@yahoo.com PIERRE DE FERMAT's last Theorem. (x,y,z,n) belong ( N+ )^4.. n>2. (a) belong Z F is function of ( a.) F(a)=[a(a+1)/2]^2 F(0)=0 and F(-1)=0. Consider two equations F(z)=F(x)+F(y) F(z-1)=F(x-1)+F(y-1) We have a string inference F(z)=F(x)+F(y) equivalent F(z-1)=F(x-1)+F(y-1) F(z)=F(x)+F(y) infer F(z-1)=F(x-1)+F(y-1) F(z-x-1)=F(x-x-1)+F(y-x-1) infer F(z-x-2)=F(x-x-2)+F(y-x-2) we see F(z-x-1)=F(x-x-1)+F(y-x-1 ) F(z-x-1)=F(-1)+F(y-x-1 ) F(z-x-1)=0+F(y-x-1 ) give z=y and F(z-x-2)=F(x-x-2)+F(y-x-2) F(z-x-2)=F(-2)+F(y-x-2) F(z-x-2)=1+F(y-x-2) give z=/=y. So F(z-x-1)=F(x-x-1)+F(y-x-1) don't infer F(z-x-2)=F(x-x-2)+F(y-x-2) So F(z)=F(x)+F(y) don't infer F(z-1)=F(x-1)+F(y-1) So F(z)=F(x)+F(y) is not equivalent F(z-1)=F(x-1)+F(y-1) So have two cases. [F(x)+F(y)] = F(z) and F(x-1)+F(y-1)]=/=F(z-1) or vice versa So [F(x)+F(y)]-[F(x-1)+F(y-1)]=/=F(z)-F(z-1). Or F(x)-F(x-1)+F(y)-F(y-1)=/=F(z)-F(z-1). We have F(x)-F(x-1) =[x(x+1)/2]^2 - [(x-1)x/2]^2. =(x^4+2x^3+x^2/4) - (x^4-2x^3+x^2/4). =x^3. F(y)-F(y-1) =y^3. F(z)-F(z-1) =z^3. So x^3+y^3=/=z^3. n>2. .Similar. We have a string inference G(z)*F(z)=G(x)*F(x)+G(y)*F(y) equivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z)=G(x)*F(x)+G(y)*F(y) infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) we see G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=G(x)*F(-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=0+G(y)*F(y-x-1 ) give z=y. and G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)*F(-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)+G(y)*F(y-x-2) x>0 infer G(x)>0. give z=/=y. So G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) don't infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) don't infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) is not equiivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So have two cases [G(x)*F(x)+G(y)*F(y)]=G(z)*F(z) and [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z-1)*F(z-1) or vice versa. So [G(x)*F(x)+G(y)*F(y)] - [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z)*[F(z)-F(z-1)]. Or G(x)*[F(x) - F(x-1)] + G(y)*[F(y)-F(y-1)]=/=G(z)*[F(z)-F(z-1).] We have x^n=G(x)*[F(x)-F(x-1) ] y^n=G(y)*[F(y)-F(y-1) ] z^n=G(z)*[F(z)-F(z-1) ] So x^n+y^n=/=z^n Happy&Peace. Trần Tấn Cường.