∫ [f'(x)g(x) - f(x)g'(x)]/(f(x)2 - g(x)2) dx = (1/2)ln[(f(x) - g(x))/(f(x) + g(x))] + C
Chat with our AI personalities
2
0
∫ f(x)/(1 - f(x)) dx = -x + ∫ 1/(1 - f(x)) dx
∫ f'(x)/√(af(x) + b) dx = 2√(af(x) + b)/a + C C is the constant of integration.
0
∫ [f'(x)g(x) - f(x)g'(x)]/(f(x)2 + g(x)2) dx = arctan(f(x)/g(x)) + C C is the constant of integration.
2
0
∫ f'(x)/√[f(x)2 + a] dx = ln[f(x) + √(f(x)2 + a)] + C C is the constant of integration.
∫ f(x)/[f(x) + g(x)]n dx = ∫ 1/[f(x) + g(x)]n - 1 dx - ∫ g(x)/[f(x) + g(x)]n dx
∫ f'(x)/(p2 + q2f(x)2) dx = [1/(pq)]arctan(qf(x)/p)
∫ f'(x)/[f(x)√(f(x)2 - a2)] dx = (1/a)arcses(f(x)/a) + C C is the constant of integration.