a pulley is usually something that lifts things it has an axel or a wheel with a rope it works?...by one rope going down and one side going up and that's all i know
mechanics and compounding
It all depends with the amount of the annual or daily compounding. In most cases it is however the daily compounding that pays more than the annual compounding.
compounding of turbines is necessary to make the turbines practically controllable.If compounding is not done the size of the turbine will be huge.Hence by pressure &velocity compounding the turbine becomes small in size &its velocity is also becomes controllable.
names and phone of compounding pharmacies in Mexico City
I think most banks use daily compounding, but you could use the continuous compounding to approximate daily compounding and be off by less than 0.2%
I think most banks use daily compounding, but you could use the continuous compounding to approximate daily compounding and be off by less than 0.2%
Interest paid on interest previously received is the best definition of compounding interest.
The difference in the total amount of interest earned on a 1000 investment after 5 years with quarterly compounding interest versus monthly compounding interest in Activity 10.5 is due to the frequency of compounding. Quarterly compounding results in interest being calculated and added to the principal 4 times a year, while monthly compounding does so 12 times a year. This difference in compounding frequency affects the total interest earned over the 5-year period.
Yes, daily compounding is generally more effective than monthly compounding for maximizing returns on investments because it allows for more frequent accrual of interest on the principal amount.
That depends on how often it is compounded. For annual compounding, you have $100 * (1 + 5%)2 = $100 * (1.05)2 = $100*1.1025 = $110.25This works because at the end of the first compounding period (year), you've earned interest on the amount at the beginning of the compounding period. At the end of the first year, you have $105.00, and the same at the beginning of the second year. At the end of the second compounding period, you have earned 5%interest on the $105.00 so it is $105 * (1.05) = $100*(1.05)*(1.05) or $100 * 1.052.Compounding more often, will yield a higher number, but not much over a 2 year period. Compounding continuously, for example is $100 * e(2*.05) = $100 * e(.1)= $100 * e(.1) = $100 * 1.10517 = $110.52 (27 cents more).Compounding daily will be close to the continuous function, and compounding monthly or quarterly will be between $110.25 and $110.52
Josiah Primatt has written: 'To the honorable the Commissioners for Compounding' -- subject(s): Early works to 1800, Land tenure, Land titles
The answer, assuming compounding once per year and using generic monetary units (MUs), is MU123. In the first year, MU1,200 earning 5% generates MU60 of interest. The MU60 earned the first year is added to the original MU1,200, allowing us to earn interest on MU1,260 in the second year. MU1,260 earning 5% generates MU63. So, MU60 + MU63 is equal to MU123. The answers will be different assuming different compounding periods as follows: Compounding Period Two Years of Interest No compounding MU120.00 Yearly compounding MU123.00 Six-month compounding MU124.58 Quarterly compounding MU125.38 Monthly compounding MU125.93 Daily compounding MU126.20 Continuous compounding MU126.21