0

# How do you Solve differential equations through operational amplifiers?

Updated: 12/24/2022

Wiki User

13y ago

Be notified when an answer is posted

Earn +20 pts
Q: How do you Solve differential equations through operational amplifiers?
Submit
Still have questions?
Related questions

### What has the author Gheorghe Micula written?

Gheorghe Micula has written: 'Differential and integral equations through practical problems and exercises' -- subject(s): Problems, exercises, Differential equations, Integral equations

### How do you solve for the velocity profile in ' flow through an annulus of radius r1 and r2 '?

differential equations. You have 2 constraints; vz=0 @ r=R1 and r=R2

### Draw and analyze the circuit using an op-amp which can convert a triangular wave into a square wave?

You need a differentiator circuit, the simplest of which passes the input through a capacitor to the inverting terminal of a fedback op-amp. The R and C you choose to use depends on the frequency and gain of the signal you are trying to output. See the wikipedia article on operational amplifiers, and find the differentiator, not the differential amplifer (totally different)

### What are the Uses of Cauchy Euler equation?

One thing about math is that sometimes the challenge of solving a difficult problem is more rewarding than even it's application to the "real" world. And the applications lead to other applications and new problems come up with other interesting solutions and on and on... But... The Cauchy-Euler equation comes up a lot when you try to solve differential equations (the Cauchy-Euler equation is an ordinary differential equation, but more complex partial differential equations can be decomposed to ordinary differential equations); differential equations are used extensively by engineers and scientists to describe, predict, and manipulate real-world scenarios and problems. Specifically, the Cauchy-Euler equation comes up when the solution to the problem is of the form of a power - that is the variable raised to a real power. Specific cases involving equilibrium phenomena - like heat energy through a bar or electromagnetics often rely on partial differential equations (Laplace's Equation, or the Helmholtz equation, for example), and there are cases of these which can be separated into the Cauchy-Euler equation.

### What kind of equations are known as differential equations?

A differential equation is a mathematical equation used to identify an unknown variable using other known variables that directly affect the unknown variable. An example of this would be discovering the velocity of a planet we cannot physically see by studying the effect it has on its parent star, through variables such as gravity, lensing, and Doppler motion. This method relies on the known variables to have predictable effects on the unknown variable, thereby allowing one to discover the answer.

### What are charactersitics of two stage common emitter amplifiers?

less current flowing through them

### Where are some of the places that one can purchase Sunn amplifiers?

Sunn amplifiers can be purchased from a variety of places. They can be purchased directly through the companies website. The amps can also be found on eBay and Craigslist.

### Why does a person at a rock concert not feel gusts of wind coming through the amplifiers?

They do if close enough

### How do you remenber equations in chemistry?

The best ways to remember chemistry equations is through flashcard memorization or acronyms.

### What are good books on differential equations for novices?

The book I used in college, and still use when needed, is A First Course in Differential Equations, by Dennis Zill. It's very clearly written with tons of problems and examples.The book Mathematics From the Birth of Numbers, by Jan Gullberg, is a cool book in general and also has a short and sweet introduction to ordinary differential equations (ODEs) at the end. He derives the general theories of ODEs pretty much entirely through the use of applications.Gradshteyn and Ryzhik's Table of Integrals, Series, and Products, which is a must-own book for mathematicians and scientists anyways, also has a rather short, but surprisingly detailed section on ODEs toward the end. I wouldn't recommend this for a novice, but it's a great reference to have once you've become familiar with differential equations.Mathematical Methods in the Physical Sciences, by Mary Boas, is a classic text covering many topics, including ODEs and PDEs (partial differential equations). I'd get this book simply for the immense amount of very useful topics it introduces in all the fields of mathematics, including the calculus of variations, tensor analysis, and functional analysis.Eventually, you'll need or want to learn about PDEs, and the most intuitive and comprehensible book I've seen regarding them is Partial Differential Equations for Scientists and Engineers, by Stanley Farlow. It's almost (if such a thing can be said about a rigorous math book) entertaining.

### How do commanders translate their concept of operations into an operational design and ultimately into tacital task through operational art?

experience, intellect, and creativity

### Is their any differentail in trains?

There is no differential on trains as compared to the differential in a car or truck. When going through a turn the wheels go at different speeds because one is traveling further than the other. Without a differential one wheel would be dragged through the turn. The railroad replaces the differential with a tapered tread on the wheel. As the train goes through the curve the taper on the wheels allows for the different rotation speeds.