A line joining the centre of a circle to any of the points on the circle is known as a radius.
The circumference of a circle is the length of the circle. The circumference of a circle = 2 × π × the radius.
The red line in the second diagram is called a chord. It divides the circle into a major segment and a minor segment.
TheoremsAngles Subtended on the Same ArcAngles formed from two points on the circumference are equal to other angles, in the same arc, formed from those two points.
Angle in a Semi-CircleAngles formed by drawing lines from the ends of the diameter of a circle to its circumference form a right angle. So c is a right angle.
ProofWe can split the triangle in two by drawing a line from the centre of the circle to the point on the circumference our triangle touches.
We know that each of the lines which is a radius of the circle (the green lines) are the same length. Therefore each of the two triangles is isosceles and has a pair of equal angles.
But all of these angles together must add up to 180°, since they are the angles of the original big triangle.
Therefore x + y + x + y = 180, in other words 2(x + y) = 180.
and so x + y = 90. But x + y is the size of the angle we wanted to find.
TangentsA tangent to a circle is a straight line which touches the circle at only one point (so it does not cross the circle- it just touches it).A tangent to a circle forms a right angle with the circle's radius, at the point of contact of the tangent.
Also, if two tangents are drawn on a circle and they cross, the lengths of the two tangents (from the point where they touch the circle to the point where they cross) will be the same.
Angle at the CentreThe angle formed at the centre of the circle by lines originating from two points on the circle's circumference is double the angle formed on the circumference of the circle by lines originating from the same points. i.e. a = 2b.
ProofYou might have to be able to prove this fact:
OA = OX since both of these are equal to the radius of the circle. The triangle AOX is therefore isosceles and so ∠OXA = a
Similarly, ∠OXB = b
Since the angles in a triangle add up to 180, we know that ∠XOA = 180 - 2a
Similarly, ∠BOX = 180 - 2b
Since the angles around a point add up to 360, we have that ∠AOB = 360 - ∠XOA - ∠BOX
= 360 - (180 - 2a) - (180 - 2b)
= 2a + 2b = 2(a + b) = 2 ∠AXB
Alternate Segment TheoremThis diagram shows the alternate segment theorem. In short, the red angles are equal to each other and the green angles are equal to each other.
ProofYou may have to be able to prove the alternate segment theorem:
We use facts about related angles:
A tangent makes an angle of 90 degrees with the radius of a circle, so we know that ∠OAC + x = 90.
The angle in a semi-circle is 90, so ∠BCA = 90.
The angles in a triangle add up to 180, so ∠BCA + ∠OAC + y = 180
Therefore 90 + ∠OAC + y = 180 and so ∠OAC + y = 90
But OAC + x = 90, so ∠OAC + x = ∠OAC + y
Hence x = y
Cyclic QuadrilateralsA cyclic quadrilateral is a four-sided figure in a circle, with each vertex (corner) of the quadrilateral touching the circumference of the circle. The opposite angles of such a quadrilateral add up to 180 degrees. Area of Sector and Arc LengthIf the radius of the circle is r,
Area of sector = πr2 × A/360
Arc length = 2πr × A/360
In other words, area of sector = area of circle × A/360
arc length = circumference of circle × A/360
6 theorems
East Midlands International CiCLE Classic was created in 2005.
it is a sphere not a cirlce.
Known as the Circumference
Here are some examples of 10th-grade geometry theorems: https://quizlet.com/subject/geometry-10th-grade-theorems/
Some theorems on artificial selection was created in 1934.
No, theorems cannot be accepted until proven.
There is no definition of the word cicle, however the term circle denotes a round shape that is completely uniform. For example, a wheel is a circular shape.
They are theorems that specify the conditions that must be met for two triangles to be congruent.
Yes, theorems - once they have been proved - are valid evidence.
Infinitely many.
Alaska.