9V by using ohms law
The current flowing through the circuit can be calculated using Ohm's Law: I = V/R, where V is the voltage (12V) and R is the resistance (3 ohms). Plugging in the values, I = 12V/3 ohms = 4 amperes. Therefore, the current flowing through the circuit is 4 amperes.
To determine the value of the resistor needed, you would typically need to know the voltage across the resistor and the desired current flowing through it. The value can be calculated using Ohm's Law: resistance (in ohms) = voltage (in volts) / current (in amperes).
No. It means it has a resistance of 2,200,000 Ohms. Plus or minus the tolerance.
Power dissipation in a resistor, or any other type of load, for that matter, is measured in watts and calculated as volts times amperes. It does not matter if the resistor is in a series or a parallel circuit, so long as the volts and amperes in the calculation is for that one resistor. Obviously, volts and amperes is distributed amongst the components of a circuit, and series vs parallel can have a significant affect on that distribution, so you will need to calculate or measure them on a case by case basis.
The power in a resistor (in watts) is simply the product of the current (in amperes) times the voltage (in volts).The power in a resistor (in watts) is simply the product of the current (in amperes) times the voltage (in volts).The power in a resistor (in watts) is simply the product of the current (in amperes) times the voltage (in volts).The power in a resistor (in watts) is simply the product of the current (in amperes) times the voltage (in volts).
2 A (amperes)
If a 9.0 volt battery is connected to a 4.0-ohm and 5.0-ohm resistor connected in series, the current in the circuit is 1.0 amperes. If a 9.0 volt battery is connected to a 4.0-ohm and 5.0-ohm resistor connected in parallel, the current in the circuit is 0.5 amperes.
If there's nothing else between the ends of the resistor and the power supply, then the voltage across the resistor is 24 volts, and the current through it is 2 amperes.
amperes
You need to calculate the equivalent resistance. For instance, if the three resistors are connected in series, simply add all the resistance values up. Then, you calculate the current (in amperes) using Ohm's Law (V=IR); that is, you need to divide the voltage by the resistance.
Where would you find a material which is a resistor? You can find a resistor material in Europe